

Adobe SCSI Input Protocol
Specification

Version 1.0

18 March 1993

Adobe Developer Support

PN LPS5010

Adobe Systems Incorporated

Adobe Developer Technologies
345 Park Avenue
San Jose, CA 95110
http://partners.adobe.com/

®

® ®

Copyright



 1993 by Adobe Systems Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of the publisher.

PostScript is a trademark of Adobe Systems Incorporated. All instances of the name PostScript in the
text are references to the PostScript language as defined by Adobe Systems Incorporated unless oth-
erwise stated. The name PostScript also is used as a product trademark for Adobe Systems’ implemen-
tation of the PostScript language interpreter.

Any references to a “PostScript printer,” a “PostScript file,” or a “PostScript driver” refer to printers,
files, and driver programs (respectively) which are written in or support the PostScript language. The
sentences in this book that use “PostScript language” as an adjective phrase are so constructed to rein-
force that the name refers to the standard language definition as set forth by Adobe Systems Incorpo-
rated.

Adobe, PostScript and the PostScript logo are trademarks of Adobe Systems Inc. which may be regis-
tered in certain jurisdictions. UNIX is a registered trademark of UNIX systems laboratories.

This publication and the information herein is furnished AS IS, is subject to change without notice, and
should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorpo-
rated assumes no responsibility or liability for any errors or inaccuracies, makes no warranty of any
kind (express, implied or statutory) with respect to this publication, and expressly disclaims any and
all warranties of merchantability, fitness for particular purposes and noninfringement of third party
rights.

iii

Contents

Adobe™ SCSI Input Protocol Specification

 5

1 Introduction 5

2 SCSI Protocol 6
Bus Free and Selection Phases 6
Message Phase 7
Command, Data and Status Phases 7
Test Unit Ready 8
Rezero Unit 8
Request Sense 8
Read and Read Extended 10
Write and Write Extended 10
Seek 10
Inquiry 10
Reserve Unit 10
 Release Unit 10
Send Diagnostic 10
Start/Stop Unit 10
Read Capacity 10

3 Simple Stream Specification 11
 Creating a Packet Header 12
Packet Header Code Segment 15

4 Using The In-Band Data Stream 16

5 Using The Out-Of-Band Stream 20
Writing to the Out Of Band Stream 20

Appendix: A SCSIPS Host Program

 23

Index

 37

iv Contents (18 Mar 93)

5

Adobe

™

 SCSI Input
Protocol Specification

1 Introduction

This document specifies the SCSI communications protocol for transmitting
data from a host to a PostScript

™

 language interpreter. Though the data being
transmitted are typically PostScript language programs nothing in the proto-
col requires this. This is a partial specification describing the currently imple-
mented protocols. Other protocols will be added to this document as they are
implemented

The target audience for this document are software developers implementing
the host-side SCSI communication driver. Extensive knowledge of the Small
Computer System Interface specification (X3.131, alias SCSI) is assumed.
This document is meant to be used with ANSI X3.131. For more information
about SCSI interfaces in general please refer to the ANSI specification.

In general the protocol can be simply described as a device to device commu-
nication where one device initiates the transfer of information to the other by
specifying the amount of data that it is to be sent. This communication is
described as

initiator

 to

target

 in the ANSI specification for Small Computer
System Interface. In this specification it will be referred to as host to RIP
(Raster Image Processor) communication. The host will send a write com-
mand with the count of the number of bytes to the RIP. The RIP then reads
this number of bytes until it reaches the end of the transmission or is inter-
rupted. In the case of an interrupt the RIP requests status information from
the host. If the RIP reads until the end of transmission it acknowledges the
EOT and waits for the next job stream.

Data is transferred on one of two data streams the in-band data stream or the
out-of-band data stream. Data sent on the in-band data stream is called in-
band data and is the driving force behind the transmission. When status infor-
mation needs to be conveyed between host and RIP it is sent via the out-of-
band data stream and is called out-of-band data. Each data stream has its own

6 Adobe™ SCSI Input Protocol Specification (18 Mar 93)

protocol but there is a standard packet format used to convey information for
both. The packet structure and the protocols for using the in-band and out-of-
band data streams are described in this specification.

In General

Some constants of the implementation are defined here and have the same
meaning throughout this document.

• All numbers preceded by a

0x

 are in hexadecimal notation.

• A sector is defined as 512 bytes.

• Sector counts in the SCSI command block indicate the number of 512 byte
blocks.

• A sector address is the

Logical Block Addres

s in the SCSI command block.

• Unless otherwise stated the protocol descriptions will be the same for both
a Level 1 PostScript Interpreter and a Level 2 PostScript Interpreter.

The example code in this document was written for a Unix® host computer.
Other hosts will have different implementations. Refer to Appendix A for a
complete listing of the sample application for a Unix host.

2 SCSI Protocol

There are six phases used to convey information over a SCSI channel. These
are the Bus Free, Selection, Message, Command, Data, and Status phases.
These phases provide the basis for all communication over the SCSI channel.
The Bus Free and Selection phases determine when the channel is available
and how to select it. The Message phase provides a mechanism for physical
path management. The Command, Data, and Status phases convey com-
mands as well as the physical data and status information to and from the
host and RIP. The communication of data or status information is typically
known as the in-band and out-of-band data stream respectively.

2.1 Bus Free and Selection Phases

The

Bus Free

 phase and

Selection

 phases are used to free the bus for use and
to select a given device on the bus. The

Bus Free

 phase begins after all trans-
missions on the channel are complete and the bus is idle. The

Selection

 phase
begins during the

Bus Free

 phase and allows the host to select a device to ini-
tiate a Read or Write.

2 SCSI Protocol 7

2.2 Message Phase

The Level 2 interpreter processes

Messages Out

 that are requested and sent
by the host. The RIP will never generate a

Message Out

 except in response to
an ATTENTION raised from the host. An example of when this phase is
invoked would be after the host has raised the ATTENTION condition to at
the beginning of a transaction to identify the RIP. The RIP will send only the
following message codes:

Table 1

Messages Out

Description Code

Message Reject 0x7

No Operation 0x8

Identify 0x80 - 0xf8 (the least 3 significant bits,
which specify a logical unit number in a

RIP, are expected to be all 0)

With all other message codes, the RIP will send a Message Reject message to
the host. When all the message bytes have been received successfully the RIP
will indicate its success by changing to either the Command, Data or Status
phases. In level 1, the RIP does not process Messages Out and will never
respond to the host’s ATTENTION with the

Messages Out

 phase.

2.3 Command, Data and Status Phases

This is the phase that conveys information between devices. The type of
information is determined by the state of the transmission and the data stream
used. The following SCSI standard commands are currently implemented
unless otherwise specified:

Table 2

Implemented SCSI commands

Command Opcode

Test unit ready 0x00

Rezero unit 0x01

Request sense 0x03

Format Unit 0x04*

Read 0x08

Write 0x0a

Seek 0x0b

Inquiry 0x12

8 Adobe™ SCSI Input Protocol Specification (18 Mar 93)

Reserve Unit 0x16*

Release Unit 0x17*

Start/Stop Unit 0x1b*

Send Diagnostic 0x1d*

Read capacity 0x25

Read Extended 0x28*

Write Extended 0x2a*

Note: * Indicates a command supported only in Level 2

The details of how these commands interact with the PostScript interpreter
will be presented below.

2.4 Test Unit Ready

Test unit ready

 will return a

GOOD

 status once the PostScript interpreter is
booted with the SCSI stream enabled (All Sys/Start and/or Sys/Bootlist pro-
cessing is complete). Note the interpreter itself may not be idle at this point.
All other conditions will return

CHECK CONDITION

 status.

2.5 Rezero Unit

Rezero unit

 will be ignored and will always return

GOOD

 status.

2.6 Request Sense

Request sense command requests data from the RIP about the previous com-
mand after the host receives a CHECK CONDITION status. Request Sense
will return a CHECK CONDITION only to report fatal errors at the RIP. All
non-fatal errors will return a GOOD status. Sense data is preserved by the
RIP until a

Request Sense

 command is received or another command is
received from the same host.

Level 1

Request sense

 for the Level 1 interpreter will return only the non-extended
sense data format for error classes 0 through 6. The vendor unique field will
always be zero.

GOOD

 status will always be returned. Error codes are:

2 SCSI Protocol 9

Table 3

Error Codes

Code Meaning

0x00 Unspecified error

0x01 Illegal Logical Sector

0x02 Sector Transfer Out of Range

0x05 E_Invalid_address

0x25 K_Illegal_Request

Non-extended sense data is supported in Level 1 only.

Level 2

Request sense data for Level 2 will be formatted in the extended mode only.
It will accept an error class of 7, which specifies extended sense, and an error
code of 0, which denotes the e extended sense data format. The sense key
returned will be from the following table:

Table 4

Sense Keys

Description Code

No Sense 0x00

Hardware Error 0x04

Illegal Request 0x05

Sense keys provide information about the type of data being returned from
the RIP. Additional information about the current CHECK CONDITION is
held in the Information Byte fields of the sense data packet. If more than 12
bytes of data are requested in the

Request Sense

command additional
8information about the current CHECK CONDITION is returned in the
Additional Sense Code field as follows:

Table 5

Additional Sense codes Supported

Description Code

No Sense 0x00

Invalid Sense 0x20

Invalid Address 0x21

Invalid Field 0x26

Bad Transfer 0x80

Bad Parameter 0x81

10 Adobe™ SCSI Input Protocol Specification (18 Mar 93)

2.7 Read and Read Extended

See descriptions of individual protocols below.

2.8 Write and Write Extended

See descriptions of individual protocols below.

2.9 Seek

Seek will be ignored and will always return

GOOD

 status.

2.10 Inquiry

The

Inquiry

 command will return the standard inquiry data header along with
vendor unique data in the form of text describing the interpreter. This text is

ADOBExxxSCSICHAN(C)1990 ADOBESYS

, where

x

 indicates a space. The
Peripheral Device Type field will return 0x00 indicating a disk. Removable
Media Bit (RMB) will be zero. The Device Type Qualifier is unspecified. The
ISO Version, ECMA Version and ANSI-Approved Version fields will all be
zero.

2.11 Reserve Unit

 Will be ignored and will always return GOOD status.

2.12 Release Unit

 Will be ignored and will always return GOOD status.

2.13 Send Diagnostic

 Will be ignored and will always return GOOD status.

2.14 Start/Stop Unit

 Will be ignored and will always return GOOD status.

2.15 Read Capacity

Read capacity

 will return all of the address space covering all of the protocols
on this LUN. For this protocol,

Read capacity

 will return the size of the Post-
Script interpreter’s logical address range in sectors (the largest usable

Logical
Block Address

 for the protocol at the LUN in question). This will be returned
in the

Logical Block Address

 area and 512 in the block length area. The Post-
Script interpreter calculates the largest usable block address according to the
following formula:

3 Simple Stream Specification 11

 0x1000 + (size of the SCSI in-band data stream input buffer in bytes)/512.

0x1000 is the address of the in-band data stream, and 512 is the number of
bytes per sector. The partial medium indicator (PMI) bit and the

Logical
Block Address

 fields will be ignored and should be set to zero for future com-
patibility.

3 Simple Stream Specification

Simple stream provides a simple but functional interface with built-in flow
control and out-of-band data capabilities. This stream implements a packet
style protocol and can be found on LUN 0 at Logical Block Addresses

0x1000

 and

0x1010

 for the in-band data and out-of-band data respectively.
Any other

Logical Block Address

 will either access another protocol or return
an error. Use the following ’C’ code to define the Logical Block Addresses
for the in-band and out-of-band streams.

/* Stream byte addresses */
#define SSII_DATA 0x1000*512
#define SSII_OUTOFBAND 0x1010*512

Packet headers are used to convey commands between devices. The same
structure is used for reading and writing in-band or out-of-band data. Any
data should directly follow the packet header and should be padded out with
zeros so that the header bytes plus the data bytes plus the padding add up to
an even multiple of 512. Upon completion of each command the RIP will
return a status byte to the host. The use of each of the fields in the packet
header will be described below. The header is arranged as follows:

Table 6

Packet Header

Word position Content

Word 0 Data Type

Word 1 Count

Word 2 Buffer Size

Word 3 Flags

Word 4 Sequence

Word 5 Channel

Word 6 Reserved

Word 7 Reserved

12 Adobe™ SCSI Input Protocol Specification (18 Mar 93)

Note that each field is a 32 bit word. Care must be taken to insure the correct
byte ordering of the header fields when transferring data between the host
and RIP. All PostScript interpreters assume the host is "big-endian" or least
significant byte first. If the host is "little-endian" then some byte reordering
manipulations will need to be done before and after transferring the packet
header.

 To define the packet header in a “C” program you would use the following
structure:

typedef struct pkthdr {

 unsigned int DataType;

 unsigned int Count;

 unsigned int bufsize;

 unsigned int Flags;

 unsigned int Sequence;

 unsigned int Channel;

 unsigned int Reserved4;

 unsigned int Reserved5;

} PktHdr, *pkthdr;

3.1

Creating a Packet Header

Keeping this structure in mind the following rules should be used when read-
ing and writing a packet header with a host application. A more detailed
description of the individual fields will follow.

In-band data stream

•

Normal Data

indicates normal in-band data

•

Normal Data + End of File

 implies that

end of file

 follows the last data
byte in the packet.

Out-of-band data stream

• Interrupt will indicate an interrupt is being sent to the RIP.

• Status will indicate a status packet is being sent from the RIP.

• ErrorInfo will indicate that error information is being sent from the RIP.

Both streams

A detailed description about the decisions to make for filling in the data
type, buffer size, count, flags, sequence, channel and reserved fields fol-
lows.

3 Simple Stream Specification 13

Data Type

There are five data types supported by this protocol Normal Data, Normal
Data+End of File, Interrupt, Status and Error Info. These are the only valid
data types found in a packet header currently, other types may be added at a
later date. Normal Data and Normal Data + End of File will be bidirectional
data types, i.e. both host and RIP will read and write packets of this type. An
Interrupt data type will only be written by the host. Status and Error Info data
will only be read by the host. All are described as follows:

Table 7 Data Types

Type Code Action by Host

Normal Data 0x00 Read/Write

Normal Data + End of File 0x01 Read/Write

Interrupt 0x02 Write

Status 0x03 Read

Error Info 0x04 Read

These can be defined in “C” using constants:

#define NORMDAT 0x00
#define NORMDATANDEOF 0x01
#define INTERRUPT 0x02
#define PKTSTATUS 0x03
#define ERRORINFO 0x04

A data type of Normal Data indicates a read or write on the in-band data
stream. Normal Data + End of File indicates that the end of data transfer has
arrived and all the data has been sent. A data type of Interrupt indicates that
the RIP should stop what its doing. Status, and Error Info indicate out-of-
band data containing information about the state of the RIP is being sent to
the host.

Buffer Size

The Buffer Size field of the packet header of a write request from the host is
used by the RIP to determine the amount of buffer space available at the host.
Each write request to the RIP will contain the current free space of the host’s
input buffer in sectors. The number of sectors specified here represents the
total number of bytes divided by 512. This number will be used by the RIP to
determine how much data to send to the host on any subsequent reads. In this
way The host application writer should take the following points into consid-
eration when choosing the value for the host’s buffer size:

14 Adobe™ SCSI Input Protocol Specification (18 Mar 93)

• This value determines an upper bound on the amount of data the
PostScript interpreter will send back to the host upon receipt of the next
read request. At the time a given read request is received by the PostScript
interpreter, there may be less valid data available for output than the host is
able to accommodate. In this case the RIP will append to the data a pad of
zeroes such that (header + data + pad / sector size) equals the number of
sectors specified in the SCSI header. If there is more data available than
the host can accommodate, the RIP will send back a number of valid data
bytes equal to the most recent host buffer size figure i.e.:

size = (bytesavailable > lastsent)? lastsent: bytesavailable;

 Another read request must then be issued to pick up the data bytes which
have not yet been read.

• If the host’s buffer size is zero, the PostScript interpreter assumes that the
host is able to accommodate as much as (sector size- header or 480) bytes
of valid data, and will send no more than this number of bytes back to the
host in a given read request i.e.:

size = (bytesavailable == 0) ? (BUFSIZE - HEADERLEN + 1): bytesav-

ailable

A buffer size of less than zero is undefined; negative buffer size codes are
reserved for future use.

Until the host issues a write command, the PostScript interpreter has no way
of knowing the host’s input buffer size. It acts as though the buffer size was
zero and the conditions outlined above apply. The PostScript interpreter
assumes that the available host buffer size is equal to the Buffer size field
specified in the header of the last write request issued by the host. If more
than one read request is issued between successive write requests, the Post-
Script interpreter uses this most recent value when determining the amount of
valid data to send back for each request as described above.

When reading from the RIP the

 is always set by the RIP to be equal to the amount of free space in the input
buffer.

Count

The Count field will contain the number of data characters, excluding header
and padding, to be considered valid in the packet.

3 Simple Stream Specification 15

Flags

Currently there is a single flag implemented. The Disconnect This Transac-
tion flag is defined as 0x01. Unused flag bits should be set to zero, other flags
may be defined in the future.

Note that the Disconnect This Transaction flag has different implications for
host read and host write transactions. In the write case, the write will be dis-
connected if any processing delay is encountered. In the read case, the trans-
action will be disconnected if any processing delay is encountered or if the
packet would have returned with a count field of zero on a non-disconnected
transaction. Note that the RIP decides to disconnect on a transaction by trans-
action basis and the host should not rely on this behavior in any particular sit-
uation. This eliminates the need to poll for PostScript interpreter output on
hosts which support Disconnect/Reselect. The current PostScript interpreters
do not support Disconnect/Reselect, although later implementations may.

Sequence

The Sequence field is a packet sequence number which should uniquely iden-
tify each packet header. When reading the host is guaranteed to receive a
unique sequence number from the RIP. In the event of a write retry by the
host the RIP will insure that a new sequence number is generated for each
transaction. Receiving two packets with the same sequence number at the
RIP will generate an CHECK CONDITION status message. When either side
generates a sequence number for a header, it generates a number unique
within the last 32768 packets. Separate counts are maintained for the in-band
and the out-of-band streams.

Channel

The Channel field is for future operation with multiple channels. It should be
set to zero and will be to zero by the RIP.

Reserved

The two Reserved fields will be defined at a later date.

3.2 Packet Header Code Segment

The following code segment builds a packet header in preparation to write to
the RIP. The stream type, data type, and data count are parameters,. pkthdr is
the type described above and buf is a data structure that will hold both the
header and the data to be sent.

16 Adobe™ SCSI Input Protocol Specification (18 Mar 93)

 /* Create packet header */

 pkthdr = &buf->header; /* Get pkthdr to point at the top of "buf"

*/

 if (stm_descriptor == SSII_DATA) {

 switch(mode) {

 case NORMDAT: pkthdr->DataType = NORMDAT; break;

 case NORMDATANDEOF: pkthdr->DataType = NORMDATANDEOF; break;

 default:

 fprintf(stderr, "Trying to send an out-of-band packet down

in-band stream\n");

 ResetTTY();

 kill(cpid, SIGTERM);

 exit(0);

 break;

 }

 }

 else if (stm_descriptor == SSII_OUTOFBAND) {

 switch(mode) {

 case INTERRUPT: pkthdr->DataType = INTERRUPT; break;

 default:

 fprintf(stderr, "Trying to send an in-band packet down out-

of-band stream\n");

 ResetTTY();

 kill(cpid, SIGTERM);

 exit(0);

 break;

 }

 }

 else {

 fprintf(stderr, "Trying to send down an undefined stream\n");

 ResetTTY();

 kill(cpid, SIGTERM);

 exit(0);

 }

 pkthdr->Count = nbytes;

 pkthdr->BufSize = 0;

 pkthdr->sequence += 1;

/* zero the flag,and reserved fields */

 zeroEmptyFlds(pkthdr);

4 Using The In-Band Data Stream

The data stream at address 0x1000 handles all in-band data (PostScript lan-
guage program text). To use this channel without invoking the SCSI flow
control it is necessary to find the size of the PostScript interpreter’s input
buffer. To do this, read either the in-band data stream or the out-of-band
stream. The Buffer Size field of the returned packet header will contain the
current free space in the PostScript interpreter’s input buffer. It is necessary
to check the buffer size before each write to determine the buffer space avail-
able at the PostScript interpreter. If any writes issued by the PostScript inter-
preter are greater than the available buffer size then a CHECK CONDITION
status and a BAD PARAM error will be returned

4 Using The In-Band Data Stream 17

On reading this data stream will return any pending output data from the
PostScript interpreter with the header’s Data Type field being set to Normal
Data or Normal Data + End of File. The Count field will contain the count of
data characters to be considered valid in the packet. The Buffer Size field will
contain the current free space in the PostScript interpreter’s input buffer. The
Flags field will contain any flags asserted for the transaction. The Sequence
field will contain a unique number. See below for more details about reading
from the data stream. The out-of-band channel is similar except it will return
either Status or Error Info type data.

See appendix A for code listings that demonstrate how to determine the size
of the current buffer as well as writing to the appropriate stream.

Writing to the In-Band Data Stream

Supported Data Types: Normal Data, Normal Data + End of File

 Text in the form of a PostScript language job should be written to the in-band
data stream. Bytes written to this stream will be sent to the PostScript inter-
preter unaltered. This allows binary data, such as image data, to be written on
this stream. To write to this stream, the PostScript interpreter’s buffer size
should be determined as described in section 3 under Buffer Size. A packet
header should be formed with data type set to either Normal Data or Normal
Data + End of File as appropriate. The count field should be set to the count
of data bytes to be sent (not including the header’s 32 bytes). The buffer size
should be set to the RIP’s currently available buffer space. The following
code demonstrates in-band writing. It is a procedure that downloads a file to
the RIP. Download will first determine if the RIP has any buffer space avail-
able. If it does then that buffer size amount is read from the file and down-
loaded, if it doesn’t the host waits until space is available.

void download(fd)

int fd; /* File descriptor */

{

 int n, bytesavailable, mode, xfer;

 int temp;

 int waited=0;

 do {

 int count=0;

 char twiddle;

 if ((bytesavailable = RIPinbuf_BytesAvail(NORMDAT)) < MINI-

MUMXFER)

 waited=1;

/* wait for RIP buffer to become available */

 while (bytesavailable < MINIMUMXFER) {

 switch(count++ & 0x3) {

 case 0:

twiddle='\\'; break;

 case 1:

18 Adobe™ SCSI Input Protocol Specification (18 Mar 93)

twiddle='|'; break;

 case 2:

twiddle='/'; break;

 default:

twiddle='-'; break;

 }

 fprintf(stderr, "%c", twiddle);

 usleep(BREAKTIME); /* If the interpreter's busy thinking,

pause to prevent thrashing */

 fprintf(stderr, "\b");

 bytesavailable = RIPinbuf_BytesAvail(NORMDAT);

 }

 if (waited) {

 fprintf(stderr, "!");

 waited=0;

 }

 xfer = (bytesavailable > MAXIMUMXFER) ? MAXIMUMXFER : bytesav-

ailable;

/* read the data from the file */

 n = read(fd, ThePacket.data, xfer);

 if (n < 0) {

fprintf(stderr, "error reading from stdin");

fflush(stderr);

kill(cpid, SIGTERM);

exit(0);

 }

/* if we read no data from file send EOF else normdata */

 if (n == 0) mode = NORMDATANDEOF;

 else {

 mode = NORMDAT;

 }

 temp = n;

 while(temp > 0) {fprintf(stderr, "@"); temp -= 4096;}

 fflush(stderr);

/* Now do the write */

 if (mode == NORMDATANDEOF) {

 WriteSCSIStm(scsi, &ThePacket, n, mode);

 fprintf(stderr, "\ndone sending\n");

 isEOF = 0;

 fflush(stderr);

 break;

 }

 else WriteSCSIStm(scsi, &ThePacket, n, mode);

 /* Flush out any error msgs */

 ChkRIPStatus(); } while (n > 0);

As demonstrated above the host does not maintain a running total of bytes
sent to the RIP. It simply sends the number of bytes available at the RIP until
all its data is sent. On intervening reads the RIP assumes that the host buffer
size is at least as large as the buffer size of the last write. This frees the host
application from needing to issue write requests before every read request to

4 Using The In-Band Data Stream 19

inform the PostScript interpreter that space is still available. The implication
is if the host plans to issue multiple reads without intervening writes, it is the
host driver’s responsibility to ensure that the available host buffer size is at
least as large as the last size reported to the PostScript interpreter before issu-
ing another read.

Note that this channel, in this mode, does not support data types other than
those mentioned above. An unsupported data type for a given channel will
result in the transfer being aborted and a CHECK CONDITION status byte
being returned on the SCSI bus

Reading from the In-Band Data Stream

Supported Data Types: Normal Data, Normal Data + End of File

Output from a PostScript language program being interpreted (not including
error and status messages) will appear in the in-band data stream when it is
read. The data read from the stream will contain a packet header which has
been tailored to the size of the read request on the SCSI bus. The data type
will be set to either Normal Data or Normal Data + End of File as appropri-
ate, the count set to the count of actual data bytes contained in the packet (not
including the header’s 32 bytes) and the buffer size set to the PostScript lan-
guage interpreter’s input buffer free space. Sequence is incremented so as not
to repeat a previous number. All other fields are set to the values described in
section 3.1

 Note that the RIP, in this mode, does not support data types other than those
mentioned above. The following code demonstrates generic band reading
dependant on the mode passed to the procedure.

RIPinbuf_BytesAvail(mode)

int mode; /*indicate the packet's datatype */

{

PPktHdr hdr;

char buf[BUFSIZE+1]; /* the buffer that holds all 512 bytes sent

back by RIP */

char *databuf; /* he points only to any data sent back */

int rem;

unsigned int stm_descriptor;

 switch(mode)

 {

 case NORMDAT: case NORMDATANDEOF:

 stm_descriptor = SSII_DATA; break;

 default:

 stm_descriptor = SSII_OUTOFBAND; break;

 }

lseek(scsi, stm_descriptor, 0); /* Seek to a non-zero spot */

if (read(scsi, buf, BUFSIZE) != BUFSIZE)

 {

20 Adobe™ SCSI Input Protocol Specification (18 Mar 93)

 fprintf(stderr, " in RIPinbuf_BytesAvail, BUFSIZE=%d\n ",BUF-

SIZE);

 perror(" read error ");

 ResetTTY();

 kill(cpid, SIGTERM);

 exit(0); /* he's still around somewhere */

 }

hdr = (PktHdr *) &buf[0]; /* Coerce into a packet header */

databuf = (char *) &buf[HEADERLEN];

databuf[BUFSIZE-HEADERLEN+1] = '\0';

if (hdr->DataType == NORMDATANDEOF)

 {

 fprintf(stderr, "\n\rlistener got EOT\n\r");

 isEOF = 1;

 fflush(stderr);

 }

return(hdr->BufSize);

}

5 Using The Out-Of-Band Stream

The data stream at address 0x1010 handles all out-of-band data (for example
error messages, status messages and interrupts). Currently there is no out-of-
band data, although there is an interrupt command, defined going from the
host to the RIP. If it is used in the future it will be subject to the same con-
straints and conditions as in-band data described above. See appendix A for
code listings that demonstrate how to determine the size of the current buffer
as well as writing to the appropriate stream.

5.1 Writing to the Out Of Band Stream

Supported Data Types: Interrupt

The write side of the out-of-band stream is used for sending signals to the
interpreter. Currently only the interrupt signal is defined for the out-of-band
stream. This signal is equivalent to a Control-C on a traditional RS-232 chan-
nel. It can be sent by creating a packet header with the data type set to Inter-
rupt, the count set to zero and the buffer size set to the size of the sender’s
currently available status/error message buffer space. This packet header
should be padded out to 512 bytes with zeros and written to the SCSI bus at
the appropriate Logical Block Address. Signals sent in this manner will
immediately affect the state of the interpreter even if the in-band data stream
buffers are full. Note that this channel in this mode does not support data
types other than those mentioned above. An unsupported data type for a given
channel will result in the transfer being aborted and a CHECK CONDITION
status byte being returned on the SCSI bus.

5 Using The Out-Of-Band Stream 21

The following procedure is a generic procedure that writes a character to the
RIP. It is used in interactive mode to determine the type of transaction with
the RIP. The transaction is dependant on the first character of the buffer
string.

Send(c)

char c;

{

 int i;

 char buf[BUFSIZE];

 int mode;

 switch(c)

 {

 case CTRL_C:

 mode = INTERRUPT;

 WriteSCSIStm(scsi, &ThePacket, 0, mode);

 break;

 case CTRL_D:

 mode = NORMDATANDEOF;

 ThePacket.data[0] = c;

 WriteSCSIStm(scsi, &ThePacket, 0, mode);

 break;

 case CTRL_T:

 /* Send a signal to the child process requesting status */

 kill(cpid, SIGUSR1);

 break;

 default:

 mode = NORMDAT;

 ThePacket.data[0] = c;

 WriteSCSIStm(scsi, &ThePacket, 1, mode);

 break;

 }

}

Reading from the Out Of Band Stream

Supported Data Types: Status, Error Info

Error messages and status output from a PostScript language program being
interpreted can be read from the out-of-band stream; what constitutes an error
message is dependent on the implementation. Reading from the out-of-band
stream when there are no pending error messages will return the interpreter’s
status string (a service traditionally provided by Control-T on an RS-232
channel). The data type will be set to either Status or Error Info as appropri-
ate. The count will be set to the count of actual data bytes contained in the
packet (not including the header’s 32 bytes) and the buffer size set to the
PostScript interpreter’s input buffer free space. The Error Info data type has a
higher priority than the Status data type, therefore, pending error messages at
the interpreter will cause the data type to be Error Info and the data to contain
the error messages. Note that status cannot be specifically requested but is
returned as a result of there being no more error messages. All reserved fields
are undefined. The data directly follows the packet header and is padded out

22 Adobe™ SCSI Input Protocol Specification (18 Mar 93)

with zeros so that the header bytes plus the data bytes plus the padding add
up to the requested number of sectors multiplied by 512 bytes. Note that this
channel, in this mode, does not support data types other than those mentioned
above. The following is an example of a procedure that reads from the out-of-
band stream. ChkRIPStatus() is called at fixed intervals by a child process. It
performs a read on the out-of-band stream.

extern int errno;

char statusbuf[BUFSIZE];

ChkRIPStatus()

{

 PPktHdr hdr;

 char buf[BUFSIZE+1]; /* the buffer that holds all 512 bytes sent

back by RIP */

 char *databuf;

 int status_len;

 /* Seek to address corresponding to out-of-band stream*/

 lseek(scsi, SSII_OUTOFBAND, 0);

 /* Read the out-of-band stream */

 if (read(scsi, buf, BUFSIZE) != BUFSIZE) {

 if (errno == EINTR) { /* We were interrupted by a status re-

quest */

 fprintf(stderr, "Out-of-band data stream access interrupted

by parent process\n\r");

 errno = 0;

 return;

 }

 else {

 perror(" read error in ChkRIPStatus ");

 ResetTTY();

 exit(0);

 }

 }

hdr = (PktHdr *) &buf[0]; /*Coerce buf into a packet header */

 databuf = (char *) &buf[HEADERLEN];

 databuf[BUFSIZE-HEADERLEN+1] = '\0';

 strcpy(statusbuf, databuf); /* Copy databuf to statusbuf */

}

23

Appendix: A
SCSIPS Host Program

Applications for a Unix Host

The following programs are used to build Interface and scsips, two programs
that demonstrate the use of the SCSI bus. Segments of these programs were
used in the body of the specification to demonstrate various aspects of the
protocol. There is disk associated with this specification that contains the fol-
lowing code as well as the makefile to build the applications.

/* getargs.c

% Copyright (C) 1990-1993 Adobe Systems Incorporated. All rights reserved

%

% This file may be freely copied and redistributed as long as:

% 1) This entire notice continues to be included in the file,

% 2) If the file has been modified in any way, a notice of such

% modification is conspicuously indicated.

%

% PostScript, Display PostScript, and Adobe are registered trademarks of

% Adobe Systems Incorporated.

%

% **

% THE INFORMATION BELOW IS FURNISHED AS IS, IS SUBJECT TO CHANGE WITHOUT

% NOTICE, AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY ADOBE SYSTEMS

% INCORPORATED. ADOBE SYSTEMS INCORPORATED ASSUMES NO RESPONSIBILITY OR

% LIABILITY FOR ANY ERRORS OR INACCURACIES, MAKES NO WARRANTY OF ANY

% KIND (EXPRESS, IMPLIED OR STATUTORY) WITH RESPECT TO THIS INFORMATION,

% AND EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES OF MERCHANTABILITY,

% FITNESS FOR PARTICULAR PURPOSES AND NONINFINGEMENT OF THIRD PARTY RIGHTS.

% **

%
*/

#include <stdio.h>

/*

** Stuffs one command line argument per invocation

** in the array of chars 'line'; returns EOF

** when it's at the end of it's rope

*/

getarg(index, linegth, argc, argv)

int index,/* Index of command line entry to return */

 length,/* Length of 'line' */

 argc;/* Number of command line arguments */

24 Appendix: A SCSIPS Host Program (18 Mar 93)

char *line,/* Array in which to stuff comm line arg */

 argv[]; / array of comm line elements */

{

 int i = 0;

 if (index >= argc || length == 0) return EOF;

/* printf("getarg: length = %d\n", length);*/

 do {

 line[i] = argv[index][i++];

/* printf("getarg: index = %d, i = %d, line[%d] = %c\n", index, i-1, i-1,

line[i-1]);*/

 } while ((line[i-1] != '\0') && (i < length));

 return 0;

}

/* interface.c

Scsi stream protocol interface for scsips.c

*/

#include <stdio.h>

#include <signal.h>

#include <string.h>

#include <errno.h>

#include "scsips.h"

#include "packet.h"

extern done;

extern int inSend, inChk;

extern int raw_mode;

extern int scsi; /* file descriptor pointing at scsi device */

extern int cpid; /* the child process id*/

unsigned int in_band_read, out_band_read; in_band_write,

out_band_write;

BadLseek() { ResetTTY(); fprintf(stderr, "Bad lseek address!\n"); kill(cpid, SIGTERM); exit (-

1); }

#define BIGENDIAN 1

/*

 * WriteSCSIStm() sends data down to the scsiinput channel. It makes sure

 * that there is space available in the RIP's input buffers before calling

 * "write".

 */

union longchar {

unsigned long l;

unsigned char c[4];

};

unsigned long unflip(val)

unsigned long val;

{

 struct longchar lc;

 lc.c[0] = val >> 24;

 lc.c[1] = val >> 16;

 lc.c[2] = val >> 8;

 lc.c[3] = val;

 25

 return (lc.l);

}

unsigned long flip(val)

ufprintf(stderr, "Trying to send down an undefined stream\n");

 ResetTTY();

 kill(cpid, SIGTERM);

 exit(0);

 }

 pkthdr->Count = nbytes;

 pkthdr->BufSize = 512;

 pkthdr->Sequence = 0;/*(stm_descriptor == SSII_DATA)

? in_band_write++ : out_band_write++;*/

 ZapEmptyFlds(pkthdr);

#if BIGENDIAN

/* fix up fields for the big-ender we're going to. */

pkthdr->DataType = flip(pkthdr->DataType);

pkthdr->Count = flip(pkthdr->Count);

pkthdr->BufSize = flip(pkthdr->BufSize);

pkthdr->Sequence = flip(pkthdr->Sequence);

#endif

 if (!(stm_descriptor == SSII_DATA || stm_descriptor == SSII_OUTOFBAND)) BadLseek();

 lseek(scsi, stm_descriptor, 0); /* Seek to the right spot */

 totalbytes = nbytes + HEADERLEN;

 ThisBuf = (totalbytes % BUFSIZE == 0) ?

 totalbytes : ((totalbytes/BUFSIZE) + 1) * BUFSIZE;

 if((retval = write(fd, buf, ThisBuf)) != ThisBuf)

 {

 ResetTTY();

 if (inSend) fprintf(stderr, "In send\n");

 else if (inChk) fprintf(stderr, "In Chk_inband\n");

 fprintf(stderr, " 'write' mistakenly wrote %d bytes, instead of %d bytes\n", retval,

ThisBuf);

 if (inSend) fprintf(stderr, "In send\n");

 else if (inChk) fprintf(stderr, "In Chk_inband\n");

 perror(" write error"); fflush(stderr);

 kill(cpid, SIGTERM);

 exit(0);

 }else

 return (retval);

}

extern int deafflag;

/*

 * RIPinbuf_BytesAvail() polls the RIP for the number of bytes available

 * in the RIP's input buffer, and returns this value.

 * For performance reasons, it makes more sense to keep grabbing data as

 * long as data is available than to grab only one packets worth at at time.

 */

RIPinbuf_BytesAvail(mode)

int mode; /*indicate the packet's datatype */

{

PPktHdr hdr;

char buf[BUFSIZE+1]; /* the buffer that holds all 512 bytes sent back by RIP */

char *databuf; /* he points only to any data sent back */

26 Appendix: A SCSIPS Host Program (18 Mar 93)

int rem;

unsigned int stm_descriptor;

 switch(mode)

 {

 case NORMDAT: case NORMDATANDEOF:

 stm_descriptor = SSII_DATA; break;

 default:

 stm_descriptor = SSII_OUTOFBAND; break;

 }

if (!(stm_descriptor == SSII_DATA || stm_descriptor == SSII_OUTOFBAND)) BadLseek();

do{

lseek(scsi, stm_descriptor, 0); /* Seek to a non-zero spot */

if (read(scsi, buf, BUFSIZE) != BUFSIZE)

 {

fprintf(stderr, " in RIPinbuf_BytesAvail, BUFSIZE=%d\n ",BUFSIZE);

 perror(" read error");

 ResetTTY();

 kill(cpid, SIGTERM);

 exit(0); /* he's still around somewhere */

 }

hdr = (PktHdr *) &buf[0]; /* Coerce into a packet header */

databuf = (char *) &buf[HEADERLEN];

databuf[BUFSIZE-HEADERLEN+1] = '\0';

#if BIGENDIAN

hdr->DataType = unflip(hdr->DataType);

hdr->BufSize = unflip(hdr->BufSize);

hdr->Count = unflip(hdr->Count);

hdr->Sequence = unflip(hdr->Sequence);

#endif

/* if(hdr->Sequence == in_band_read)

fprintf(stderr, "seq: %d", hdr->Sequence);*/

if (raw_mode)

 {

 DsplyWithCR(databuf);

 }

else /* called from onalarmcooked() */

 {

 fwrite(databuf, 1, hdr->Count, stdout);

 fflush(stdout);

 }

if (hdr->DataType == NORMDATANDEOF)

 {

fprintf(stderr, "\n\rlistener got EOT\n\r");

 done = 1;

 fflush(stderr);

 }

}while ((hdr->Count == (BUFSIZE-HEADERLEN)) && (mode == NORMDAT));

return(hdr->BufSize);

}

 27

/*

 * ChkRIPStatus() is called at fixed intervals by a child process.

 * It performs a read on the out-of-band stream, and checks the type

 * of the returned packet. If the returned packet is a status packet,

 * a global status string is updated. If the returned packet is

 * an error packet, the error msg is displayed immediately, and the

 * status message is updated as well.

 */

extern int errno;

char statusbuf[BUFSIZE];

ChkRIPStatus()

{

 PPktHdr hdr;

 int readval;

 char buf[BUFSIZE+1]; /* the buffer that holds all 512 bytes

 sent back by RIP */

 char *databuf;

 extern int deafflag;

 /* Seek to address corresponding to out-of-band stream*/

 if(lseek(scsi, SSII_OUTOFBAND, 0)<0) {

 if (inSend) fprintf(stderr, "In send\n"); else if (inChk) fprintf(stderr, "In

Chk_inband\n");

 perror(" Bad lseek ");

 ResetTTY();

 exit(1);

 }

 /* Read the out-of-band stream */

 if ((readval=read(scsi, buf, BUFSIZE)) != BUFSIZE) {

 if (errno == EINTR) { /* We were interrupted by a status request */

 fprintf(stderr, "Out-of-band data stream access interrupted by parent process\n\r");

 errno = 0;

 return;

 }

 else {

 fprintf(stderr, "readval=%d\n", readval);

 perror(" THIS read error ");

 if (inSend) fprintf(stderr, "In send\n"); else if (inChk) fprintf(stderr, "In

Chk_inband\n");

 ResetTTY();

 exit(0);

 }

 }

 hdr = (PktHdr *) &buf[0]; /* Coerce this guy into a packet header */

#if BIGENDIAN

 hdr->DataType = unflip(hdr->DataType);

 hdr->BufSize = unflip(hdr->BufSize);

 hdr->Count = unflip(hdr->Count);

 hdr->Sequence = unflip(hdr->Sequence);

#endif

 databuf = (char *) &buf[HEADERLEN];

 databuf[BUFSIZE-HEADERLEN+1] = '\0';

 strcpy(statusbuf, databuf); /* Copy databuf to statusbuf */

 if(hdr->Sequence == out_band_read)

fprintf(stderr, "Sequence now supported-outband\n");

 if (hdr->DataType == ERRORINFO) {

28 Appendix: A SCSIPS Host Program (18 Mar 93)

 if (raw_mode) DsplyWithCR(statusbuf);

 else {

 fprintf(stderr, "%s", statusbuf);

 fflush(stderr);

 }

 }

}

/* scsips.c

Utility for sending jobs to, or entering PostScript interactive mode with RIP.

Currently set up so that X will be printed to stdout b/w packets. This

makes the task of verifying that the PS flush operator is forcing the flush

behavior required to make Mac applications feeding PS to the rip over scsi

work. See the SHOW_FLUSH #define in interface.c.

*/

#include <stdio.h>

#include <signal.h>

#include <string.h>

#include <setjmp.h>

#include "scsips.h"

#include "packet.h"

#define LINESIZE 64

#define BIGENDIAN 0

#if BIGENDIAN

#define SCSIPORT "/dev/rrz1c"

#define BREAKTIME .1

#define usleep sleep

#else

#define SCSIPORT "/dev/rsd2c"

#define BREAKTIME 100000

#endif

char *progname;

int done, almostdone; /* Flag set by GetRIPinbuf forblemumble*/

int scsi; /* fid for the scsi port */

int cpid; /* child processes id numbers*/

int spawned_child; /* flag indicating whether you've already spun off the

 process for monitoring output from the RIP */

int doingfiles;

extern char statusbuf[BUFSIZE];

char *usage = "[-i -b -s -g -t] [file ...]";

static Pkt ThePacket;

extern unsigned int in_band_read, in_band_write,

out_band_read, out_band_write;

/* Debugging flags */

int debug;

int glenflag, deafflag, separate_data, ttyflag, exper;

int inChk;

int inSend;

int badsend;

main(argc, argv)

int argc;

char *argv[];

{

 29

 int f1;

 char line[LINESIZE];

 int i, gointeractive, x, y;

 FILE *fopen();

 char *thePort;

 void download();

 extern onintr();

 progname = argv[0];

 i= done= gointeractive=0;

 /* Assert debug mode */

 debug = 0;

 in_band_read = in_band_write = 1;

 out_band_read = out_band_write = 1;

 /* open the scsi port in rw mode */

 if ((scsi = open(SCSIPORT, 2)) == -1)

 {

 fprintf(stderr, "can't open %s for read/write", thePort);

 exit(1);

 }

 while (getarg(++i, line, LINESIZE, argc, argv) != EOF)

 {

 if (!doingfiles) /* Still processing command line flags. */

{

 if (line[0] == '-') /* command line switch */

 {

 switch(line[1])

{

 case 'g':/* always send 15328 bytes */

 glenflag = 1; break;

 case 't':

 ttyflag = 1;/* getarg(++i, line, LINESIZE, argc, argv);*/

#if 0

strcpy(mybuf, line[2]);

printf("%s %s\n", line[0],mybuf);

thePort = mybuf;

#endif

break;

 case 's':/* separate data from eof pkt */

 separate_data = 1; break;

 case 'd':/* debug channel */

 debug = 1; break;

 case 'h':/* don't listen to back channel */

 deafflag = 1; break;

case 'i': /* interactive mode */

 gointeractive = 1; break;

case 'X':/* Send big bunch of EOFs, then a string */

 exper = 1;

 break;

case 'b':/* bad method of sending--sends half */

 badsend = 1;

 break;

default:

 fprintf(stderr, "Usage: %s\n", usage);

30 Appendix: A SCSIPS Host Program (18 Mar 93)

 exit(1);

 break;

}

 }

 else /* filename */

 {

 doingfiles = 1;

 }

}

 if (doingfiles) /* Download files */

{

 if (line[0] == '-') /* Not accepting flags; only filenames */

 {

 fprintf(stderr, "Usage: %s\n", usage);

 exit(1);

 }

 /* open up the file to be sent down */

 if ((f1 = open(line, 0)) == -1)

 {

 fprintf(stderr, "\n\rcan't open %s\n\r", line);

 exit(1);

 }

 fprintf(stderr, "\n\rsending %s\n\r", line);

 download(f1);

}

if(exper){

/* send a bunch of EOF packets */

/* then send a string followed by 1 eof pkt */

}

 }

 /* Sending stdin? */

 if (!gointeractive && !doingfiles)

 {

 fprintf(stderr, "\n\rsending stdin\n\r");

 download(fileno(stdin));

 }

if(exper){

#if 0

int bytesavailable;

 bytesavailable = RIPinbuf_BytesAvail(NORMDAT);

 fprintf(stderr, " #%d# ", bytesavailable);

 bytesavailable = RIPinbuf_BytesAvail(PKTSTATUS);

 fprintf(stderr, " #%d# ", bytesavailable);

#endif

 doexper();

}

 /* Now that any files to be sent are there, see if you need to go

 interactive */

#if 1

 x = RIPinbuf_BytesAvail(PKTSTATUS);

y = RIPinbuf_BytesAvail(NORMDAT);

if(x != y) printf("x = %d, y = %d\n", x, y);

#endif

 if (gointeractive)

 {

 /* FIRST: Put the tty into raw mode */

 31

 if(!ttyflag)

InitTTY();

 /*re-map signals to restore tty settings if process is zapped */

 signal(SIGUSR1, SIG_IGN); /* Just ignore this signal if it's sent

 to yourself */

 if (signal(SIGINT, SIG_IGN) != SIG_IGN)

signal(SIGINT, onintr);

 if (signal(SIGQUIT, SIG_IGN) != SIG_IGN)

signal(SIGQUIT, onintr);

 if (signal(SIGKILL, SIG_IGN) != SIG_IGN)

signal(SIGKILL, onintr);

/* if(!deafflag){*/

 if ((cpid=fork()) == 0)

Get_RIP_data(); /* The Kid */

 /* FINALLY: do it! */

 interact();

 }

 else /* Finish up */

 {

/* keep reading data fed by the RIP, until we receive the EOF */

 while(!done) {

usleep(BREAKTIME);

RIPinbuf_BytesAvail(NORMDAT);

}

 Chk_inbandstm();

 fflush(stderr);

 exit(0);

 }

}

doexper()

{

register int mode, i;

#if 0

for(i = 0;i < 400;i++){

Chk_inbandstm();

 WriteSCSIStm(scsi, &ThePacket, 0, NORMDATANDEOF);

}

#endif

i = 0x65;

mode = NORMDAT;

 ThePacket.data[0] = i;

 WriteSCSIStm(scsi, &ThePacket, 1, mode);

}

interact() /* Driver for interactive mode over scsi */

{

 int c;

 int exitstate, carryover;

 int i;

 fprintf(stderr, "Going interactive... !<ESC> to exit.\n\r");

 exitstate = carryover = 0;

 while(1)

 {

32 Appendix: A SCSIPS Host Program (18 Mar 93)

 c=getchar();

 if (exitstate)

{

 if (c == ESC)

 {

 fprintf(stderr, "%c%c", '\n','\r');

 if(!ttyflag)

ResetTTY();

 kill(cpid, SIGTERM);

 exit(0);

 }

}

 switch(c)

{

case '!': /* To leave interactive mode, type "!<escape>" */

 if (exitstate == 1)

 {

 exitstate = 0;

 carryover = 1; /* got 2 "!"s in a row; signal that...*/

 }

 else

 { /* Just saw a "!" */

 exitstate = 1;

 }

 break;

default: /* Regular character to be sent to printer */

 if (carryover == 1)

 {

 carryover = 0; /* reset flag */

 Send('!');

 }

 Send(c);

/* fprintf(stderr, "|"); fflush(stderr);*/

 break;

}

 }

}

int raw_mode;

Get_RIP_data()

{

 int onalarm();

 extern int dsply_status();

 raw_mode = 1;

 signal(SIGUSR1, dsply_status);

 while (1) {

 usleep(BREAKTIME);

 Chk_inbandstm();

 }

}

dsply_status()

{

printf("yup");

 33

 signal(SIGUSR1, dsply_status);

 if (raw_mode)

 {

 DsplyWithCR(statusbuf);

 }

 else

 {

 fprintf(stderr, "%s", statusbuf);

 fflush(stderr);

 }

}

Chk_inbandstm()

{

 inChk=1;

/* if (inSend) return;*/

 if (debug) fprintf(stderr, "*");

 ChkRIPStatus();

 RIPinbuf_BytesAvail(NORMDAT);

 inChk=0;

}

DsplyWithCR(b)

char *b;

{

#if 0

 int strlen();

#endif

 int len=strlen(b);

 int count;

 for (count=0; count<len; count++)

 {

 fprintf(stderr, "%c",b[count]);

 if (b[count] == '\n')

fprintf(stderr, "%c", '\r');

 }

 fflush(stderr);

}

Send(c)

char c;

{

 int i;

 char buf[BUFSIZE];

 int mode;

 inSend=1;

 switch(c)

 {

 case CTRL_C:

 mode = INTERRUPT;

#if 0

 ThePacket.data[0] = c;

#endif

 WriteSCSIStm(scsi, &ThePacket, 0, mode);

34 Appendix: A SCSIPS Host Program (18 Mar 93)

 break;

 case CTRL_D:

 mode = NORMDATANDEOF;

 WriteSCSIStm(scsi, &ThePacket, 0, mode);

 break;

 case CTRL_T:

 /* Send a signal to the child process requesting status */

 kill(cpid, SIGUSR1);

 break;

 default:

 mode = NORMDAT;

 ThePacket.data[0] = c;

 WriteSCSIStm(scsi, &ThePacket, 1, mode);

 break;

 }

 inSend=0;

}

onintr() /* Clean up if interrupted */

{

 ResetTTY();

}

void download(fd)

int fd; /* File descriptor */

{

 int n, bytesa, bytesavailable, mode, xfer;

 int temp, flipper;

 int waited=0;

 char stage[MAXDATA];

 do {

 int count=0;

 char twiddle;

if(badsend){

flipper = (flipper > 1) ? 0 : 1;

if(flipper){

 if ((bytesavailable = RIPinbuf_BytesAvail(PKTSTATUS)) < MINIMUMXFER){

 bytesa= RIPinbuf_BytesAvail(NORMDAT);

/*if(bytesavailable != bytesa) printf("&"); */

 waited=1;}

 }

}else {

 if ((bytesavailable = RIPinbuf_BytesAvail(NORMDAT)) < MINIMUMXFER)

 waited=1;

}

 if (glenflag) {

 while (bytesavailable != 30729) {

 /* usleep(100000); */

 ChkRIPStatus();

 bytesavailable = RIPinbuf_BytesAvail(NORMDAT);

}

 bytesavailable = 15328;

 }

 else {

 35

 while (bytesavailable < MINIMUMXFER) {

 switch(count++ & 0x3) {

 case 0:

twiddle='\\'; break;

 case 1:

twiddle='|'; break;

 case 2:

twiddle='/'; break;

 default:

twiddle='-'; break;

 }

 fprintf(stdout, "%c", twiddle);

 usleep(BREAKTIME);

 fprintf(stdout, "\b");

 ChkRIPStatus();

 bytesavailable = RIPinbuf_BytesAvail(NORMDAT);

 }

 } /* not glenflag case */

 if (waited) {

 fprintf(stderr, "!");

 waited=0;

 }

 xfer = (bytesavailable > MAXIMUMXFER) ? MAXIMUMXFER : bytesavailable;

if(badsend)

xfer >>= 1;

 n = read(fd, ThePacket.data, xfer);

 if (n < 0)

 {

 if(!ttyflag)

ResetTTY();

 perror(" error reading from stdin"); fflush(stdout);

 kill(cpid, SIGTERM);

 exit(0);

 }

if(!separate_data){

 if (n == 0) mode = NORMDATANDEOF;

 else { mode = NORMDAT; }

} else {

 if (n == 0) almostdone = 1;

 mode = NORMDAT;

}/* separate_data */

 temp = n;

#if 0

 while(temp > 0) {fprintf(stderr, "@"); temp -= 4096;}

#endif

 fflush(stdout);

 if (mode == NORMDATANDEOF) {

 WriteSCSIStm(scsi, &ThePacket, n, mode);

 fprintf(stderr, "\ndone sending\n");

 fflush(stderr);

 break;

 }

36 Appendix: A SCSIPS Host Program (18 Mar 93)

 else {

WriteSCSIStm(scsi, &ThePacket, n, mode);}

 /* Flush out any error msgs */

 ChkRIPStatus();} while (n > 0);

if(separate_data){

 WriteSCSIStm(scsi, &ThePacket, 0, NORMDATANDEOF);

 fprintf(stderr, "\ndone sending\n");

 fflush(stderr);

}

 ChkRIPStatus();

}

/* tty.c

*/

#include <stdio.h>

#include <sys/ioctl.h>

struct sgttyb old_tty;

static int inittty;

InitTTY() /* Puts tty in raw mode */

{

struct sgttyb tty;

if (gtty(fileno(stdin), &old_tty) == -1)

{

printf("gtty failure\n");

exit(1);

}

tty = old_tty;

tty.sg_flags |= RAW;

tty.sg_flags &= ~ECHO;

if (stty(fileno(stdin), &tty) == -1)

{

printf("stty failure\n");

exit(1);

}

inittty = 1;

}

ResetTTY()

{

if(inittty)

stty(fileno(stdin), &old_tty);

}

37

Index

B

big-endian 12
Buffer Size 13
Bus Free and Selection Phases 6

C

Channel 15
Command, Data and Status Phases 7
Control-C 20
Control-T 21

D

Data Types 13

E

E_Invalid_address 9
Error Codes 9
Error Info 13
extended sense 9

F

Flags 15

H

host 5

I

Illegal Logical Sector 9
In-band data stream 12
initiator 5
Inquiry 10
Interrupt 13
interrupt signal 20

K

K_Illegal_Request 9

L

little-endian 12
Logical Block Address 6, 10, 11

M

Message Phase 7
Messages Out 7

N

Normal Data + End of File 13

O

Out-of-band data stream 12

P

Packet Header 11
Packet Header Code Segment 15
PMI 11

R

Read and Read Extended 10
Read Capacity 10
Reading from the In-Band Data

Stream 19
Reading from the Out Of Band Stream

21
Release Unit 10
Request Sense 8
Reserve Unit 10
Rezero Unit 8

38 Index (18 Mar 93)

RIP 5

S

sector 6
Sector Transfer Out of Range 9
Seek 10
Send Diagnostic 10
Sense Keys 9
Sequence 15
Simple stream 11
Start/Stop Unit 10
Status 13

T

target 5
target audience 5
Test Unit Ready 8

U

Unspecified error 9
Using The In-Band Data Stream 16
Using The Out-Of-Band Stream 20

W

Write and Write Extended 10
Writing to the In-Band Data Stream

17
Writing to the Out Of Band Strea 20

	Adobe™ SCSI Input Protocol Specification
	1 Introduction
	2 SCSI Protocol
	2.1 Bus Free and Selection Phases
	2.2 Message Phase
	2.3 Command, Data and Status Phases
	2.4 Test Unit Ready
	2.5 Rezero Unit
	2.6 Request Sense
	2.7 Read and Read Extended
	2.8 Write and Write Extended
	2.9 Seek
	2.10 Inquiry
	2.11 Reserve Unit
	2.12 Release Unit
	2.13 Send Diagnostic
	2.14 Start/Stop Unit
	2.15 Read Capacity

	3 Simple Stream Specification
	3.1 Creating a Packet Header
	3.2 Packet Header Code Segment

	4 Using The In-Band Data Stream
	5 Using The Out-Of-Band Stream
	5.1 Writing to the Out Of Band Stream

	Appendix: A SCSIPS�Host�Program
	Index

