

Color Separation
Conventions for PostScript
Language Programs

Technical Note #5044

24 May 1996

Adobe Developer Support

PN LPS5044

®

® ®

Adobe Systems Incorporated

Adobe Developer Technologies
345 Park Avenue
San Jose, CA 95110
http://partners.adobe.com/

Copyright

 1996 by Adobe Systems Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of the publisher. Any software referred to herein is furnished under license and may
only be used or copied in accordance with the terms of such license.

PostScript is a trademark of Adobe Systems Incorporated. All instances of the name PostScript in the
text are references to the PostScript language as defined by Adobe Systems Incorporated unless oth-
erwise stated. The name PostScript also is used as a product trademark for Adobe Systems’ implemen-
tation of the PostScript language interpreter.

Any references to a “PostScript printer,” a “PostScript file,” or a “PostScript driver” refer to printers,
files, and driver programs (respectively) which are written in or support the PostScript language. The
sentences in this book that use “PostScript language” as an adjective phrase are so constructed to rein-
force that the name refers to the standard language definition as set forth by Adobe Systems Incorpo-
rated.

PostScript, the PostScript logo, Display PostScript, Adobe, the Adobe logo, Adobe Illustrator, Adobe
PageMaker, Adobe PrePrint, Adobe TrapWise are trademarks of Adobe Systems Incorporated regis-
tered in the U.S.A. and other countries. FrameMaker is a registered trademark of Frame Technology
Corporation. Helvetica and Times are trademarks of Linotype AG and/or its subsidiaries. QuarkXPress
is a registered trademark of Quark, Inc. Macromedia FreeHand is a trademark of Macromedia, Inc.

This publication and the information herein is furnished AS IS, is subject to change without notice, and
should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorpo-
rated assumes no responsibility or liability for any errors or inaccuracies, makes no warranty of any
kind (express, implied or statutory) with respect to this publication, and expressly disclaims any and
all warranties of merchantability, fitness for particular purposes and noninfringement of third party
rights.

iii

Contents

Contents

 iii

Color Separation Conventions for PostScript
Language Programs

 5

1 Introduction 5

2 Creating Separations from Composite Documents 6
Level 2 in-RIP Separations 6
Level 1-Style Separations 8
Supporting Overprinting, Images and Spot Colors 11

3 Color Related Operators and Comments 12
Convention Operators 12
Other Operators Affecting Color Separation 15
DSC Color Separation Convention Comments 17

4 Color Separation Guidelines and Restrictions 19
Specific Requirements 19
More Free Advice 23

5 Examples 24
sep_ops ProcSet Resource 24
Line Art Example 28
Image Examples 30
Example of Printing on All Separations 34

Appendix A: Separation Program Compatibility
Checklist

 37

Appendix B: Advice to Separation Program Developers

 39

Appendix C: References

 41

Index

 43

iv (24 May 96)

5

Color Separation
Conventions for PostScript
Language Programs

1 Introduction

This document replaces technical note #5044, “Proposal for Color Separation
Conventions for PostScript Language Programs,” last modified on December
14, 1989. The aforementioned document proposed various commenting and
coding conventions for PostScript language files for enabling post-processing
utilities to create color separations. Many of those conventions were adopted
by the industry, a few were not. This paper documents current practice in
regards to which conventions have been adopted by standard prepress and
page-layout applications, such as Adobe PageMaker, QuarkXPress

®

, Adobe
PrePrint

™

 Pro, and Adobe TrapWise

™

. Other enhancements to the paper
include the addition of some introductory material on Level 2 in-RIP separa-
tions, and a number of examples of composite PostScript language output.

The intended audience for this paper is developers of PostScript drivers and
applications that generate their own PostScript language output. This docu-
ment explains how PostScript language code should be structured so that it
will color separate properly in other programs. The paper gives a high-level
overview of how to create color separations from composite PostScript lan-
guage files; however, it does not provide any rigorous sample code for this
purpose. Although this document is directed toward authors of composite
output, developers of applications that perform color separation should be
familiar with its contents, and should make special note of the specific rec-
ommendations offered in Appendix B.

The reader should have a knowledge of prepress printing processes and ter-
minology. For those not familiar with prepress nomenclature, Appendix C
lists a number of reference documents.

Section 2 of this document explains how to achieve color separations in both
PostScript language Level 1 and Level 2 environments. Section 3 introduces
the color separation convention operators and comments. Section 4 describes
additional guidelines and restrictions for composite PostScript language files.
Section 5 concludes the document with several code samples which conform
to the color separation conventions.

6 Color Separation Conventions for PostScript Language Programs 24 May 96

2 Creating Separations from Composite Documents

How color separations are achieved will depend on whether the PostScript
language file is separated by a utility on the host computer or by the printer’s
raster image processor (RIP). When printing to Level 2 PostScript output
devices that are capable of in-RIP separations, color separations are produced
by adding a few lines of code to the top of a composite PostScript language
job and sending it to the printer. When printing to Level 1 devices, and Level
2 devices that don’t have this in-RIP separation feature, creating separations
is more difficult, and time consuming, and imposes added constraints on the
composite Postscript language code. This latter method of creating separa-
tions is called “Level 1-style separations”.

An understanding of color separation methods is necessary to appreciate the
role that the color separation conventions play in this process. This section
will give an overview of both Level 2 in-RIP separations and Level 1-style
separations.

2.1 Level 2 in-RIP Separations

Since Level 2 in-RIP separations are the most straightforward, we will first
demonstrate how these are achieved, then we will discuss Level 1-style sepa-
rations.

Making color separations in the RIP entails adding a few lines of set-up code
to the composite PostScript language file; the code must do the following:

1. Set the page device

Separations

 key to

true

.

2. Set the page device

ProcessColorModel

 key to

/DeviceCMYK

.

3. (optional) Set the page device

SeparationColorNames

 array to the list of
all process or custom color inks that your document contains. The names
of the colorants of the native color space are included implicitly, regard-
less of the contents of the array; thus, the empty array [] is equivalent to
[/Cyan /Magenta /Yellow /Black], after you have performed step 2, above.

4. (optional) Specify which separations to produce and the order that the sep-
arations should be output in, using the

SeparationOrder

 page device key.
Legal values are the names of the colorants of the native color space, as
well as any additional names in the

SeparationColorNames

array. An
empty array [] requests that separations for all colors of the native color
space, as well as all colors in the

SeparationColorNames

array, be pro-
duced in an unspecified order. In our example below, we request that only
the cyan and black process color separations be produced, in that order.

The setpagedevice keys referenced above are described in more detail in the
“PostScript Language Reference Manual Supplement for version 2016”.

2 Creating Separations from Composite Documents 7

Example 1 below describes a page containing two process colors: cyan and
black. The composite page description is sent only once and the output
device produces two separations from this data, as shown in Figure 1. If a file
consists of more process colors and additional custom colors, the composite
representation of the job still only needs to be sent once for the entire color
separation job.

Example 1:

Level 2 in-RIP separation example

%!

%%BoundingBox: 72 72 144 144

%%DocumentNeededResources: font Times-Roman

%%+ font Helvetica

%%DocumentProcessColors: Cyan Black

%%EndComments

%%BeginProlog

%%EndProlog

%%BeginSetup

%%EndSetup

%%Page: 1 1

%%BeginPageSetup

% The following setpagedevice call accomplishes steps 1, 2 and 4

% Step 3 is unnecessary for our example.

<<

 /Separations true

 /ProcessColorModel /DeviceCMYK

 /SeparationOrder [/Cyan /Black]

 >> setpagedevice

%%EndPageSetup

%%BeginDocument: (testfiles/file1)

%!PS-Adobe-3.0

%%BoundingBox: 0 0 72 72

%%DocumentProcessColors: Cyan Black

%%DocumentNeededResources: font Times-Roman

%%+ font Helvetica

%%EndComments

%%BeginProlog

%%EndProlog

%%Page: 1 1

%%BeginPageSetup

/pgsave save def

%%EndPageSetup

% The remainder of the code describes a black box with 4 rotated

% lines on it. The lines are painted with shades of cyan, ranging

% from 0% to 90% ink coverage, as shown in Figure 1.

100 100 translate

gsave

 72 120 div dup scale

 60 60 translate

 newpath -60 -60 moveto 120 0 rlineto

 0 120 rlineto -120 0 rlineto closepath

 0 setgray gsave fill grestore

 1 setlinejoin 1 setlinecap

 0 1 3 { % for

8 Color Separation Conventions for PostScript Language Programs 24 May 96

 0.3 mul 0 0 0 setcmykcolor

 5 setlinewidth

 newpath 50 -10 moveto

 -40 40 rlineto stroke

 90 rotate

 } for

grestore

%%PageTrailer

pgsave restore showpage

%%Trailer

%%EOF

%%EndDocument

%%Trailer

%%EOF

Figure 1

Output from Example 1

2.2 Level 1-Style Separations

Fundamentally, PostScript language Level 1-style color separation works by
redefining some operators and procedures to change their behavior. The file
to be separated must be executed with these redefinitions.

As a simplistic example, suppose you want to print the cyan separation of a
document. One approach to this is to redefine the

setcmykcolor

 operator,
which specifies tints of cyan, magenta, yellow, and black ink. If you “throw
away” the magenta, yellow, and black, you have the percentage of pure cyan
ink. For a color separation, you are printing in black and white; the black
areas will eventually have colored ink applied to them. Therefore, what you
want as an end result is to print a percentage of black that corresponds to the
percentage of cyan that was specified:

/setcmykcolor { % def

 pop pop pop 1 exch sub setgray

} bind def

This is a simplistic example of what a color separation program may do to
output the cyan color separation. To complicate the scenario slightly, you
may have a black shape that is partially covered by a cyan shape. In order for

Composite Cyan Plate Black Plate

2 Creating Separations from Composite Documents 9

the cyan shape to print as pure cyan, you will not want any of the black ink to
print where the two shapes overlap. The following example addresses that
problem, by having the cyan shapes print as white on the black plate.

In the example, we use a Level 1-style separation method to color separate
the same composite file as in Example 1. To produce two process color sepa-
rations, the original composite job must be sent twice. First, we emit a few
lines of set-up code to print the cyan separation, followed by the composite
job, then we emit set-up code for the black separation, followed by the com-
posite job. If a document contains all four process colors, the original com-
posite job must be sent to the printer four times. For complicated jobs, this
separation technique may require sending significantly more data to the
printer than in the in-RIP separation case, thus resulting in a much longer
transmission and processing time.

In Example 2, the

setcmykcolor

 and

setgray

 operators are redefined for the
cyan plate so that tints of cyan print in corresponding tints of black and all
other colors print as white (no ink). For the black plate, the

setcmykcolor

operator is redefined so that black prints as various tints of black and other
colors print as white (no ink).

Example 2:

Level 1-style separation example

%!

%%BoundingBox: 72 72 144 144

%%DocumentProcessColors: Cyan Black

%%DocumentNeededResources: font Times-Roman

%%+ font Helvetica

%%Pages: 2

%%EndComments

%%BeginProlog

%%EndProlog

%%BeginSetup

%%EndSetup

%%PlateColor: Cyan

%%Page: 1 1

%%BeginPageSetup

save

4 dict begin

 /HalftoneType 1 def

 /Frequency 133 def

 /Angle 15 def

 /SpotFunction { abs exch abs 2 copy add 1 gt {

 1 sub dup mul exch 1 sub dup mul add 1 sub

 }{

 dup mul exch dup mul add 1 exch sub

 } ifelse } bind def

currentdict end

sethalftone

% redefine setcmykcolor and setgray

/oldsetgray /setgray load def

/setcmykcolor {pop pop pop 1 exch sub oldsetgray} bind def

10 Color Separation Conventions for PostScript Language Programs 24 May 96

/setgray {pop 1 oldsetgray} def

%%EndPageSetup

%%BeginDocument: (testfiles/file1)

%!PS-Adobe-3.0

%%BoundingBox: 0 0 72 72

%%DocumentProcessColors: Cyan Black

%%DocumentNeededResources: font Times-Roman

%%+ font Helvetica

%%EndComments

%%BeginProlog

%%EndProlog

%%Page: 1 1

%%BeginPageSetup

/pgsave save def

%%EndPageSetup

100 100 translate

gsave

 72 120 div dup scale

 60 60 translate

 newpath -60 -60 moveto 120 0 rlineto

 0 120 rlineto -120 0 rlineto closepath

 0 setgray gsave fill grestore

 1 setlinejoin 1 setlinecap

 0 1 3 { % for

 0.3 mul 0 0 0 setcmykcolor

 5 setlinewidth

 newpath 50 -10 moveto

 -40 40 rlineto stroke

 90 rotate

 } for

grestore

%%PageTrailer

pgsave restore showpage

%%Trailer

%%EOF

%%EndDocument

%%PageTrailer

restore

%%PlateColor: Black

%%Page: 1 2

%%BeginPageSetup

save

4 dict begin

 /HalftoneType 1 def

 /Frequency 133 def

 /Angle 45 def

 /SpotFunction { abs exch abs 2 copy add 1 gt {

 1 sub dup mul exch 1 sub dup mul add 1 sub

 }{

 dup mul exch dup mul add 1 exch sub

 } ifelse } bind def

currentdict end

sethalftone

% redefine setcmykcolor

/setcmykcolor {4 1 roll pop pop pop 1 exch sub setgray} bind def

2 Creating Separations from Composite Documents 11

%%EndPageSetup

%%BeginDocument: (testfiles/file1)

%!PS-Adobe-3.0

%%BoundingBox: 0 0 72 72

%%DocumentProcessColors: Cyan Black

%%DocumentNeededResources: font Times-Roman

%%+ font Helvetica

%%EndComments

%%BeginProlog

%%EndProlog

%%Page: 1 1

%%BeginPageSetup

/pgsave save def

%%EndPageSetup

100 100 translate

gsave

 72 120 div dup scale

 60 60 translate

 newpath -60 -60 moveto 120 0 rlineto

 0 120 rlineto -120 0 rlineto closepath

 0 setgray gsave fill grestore

 1 setlinejoin 1 setlinecap

 0 1 3 { % for

 0.3 mul 0 0 0 setcmykcolor

 5 setlinewidth

 newpath 50 -10 moveto

 -40 40 rlineto stroke

 90 rotate

 } for

grestore

%%PageTrailer

pgsave restore showpage

%%Trailer

%%EOF

%%EndDocument

%%PageTrailer

restore

%%Trailer

%%EOF

2.3 Supporting Overprinting, Images and Spot Colors

Redefining Level 1 operators to produce separations will work with some
basic types of documents, as shown above. However, certain types of docu-
ments cannot be described using Level 1 PostScript operators, in a manner
that allows easy host-based separation. For example, documents that contain:

1. custom (spot) colors, in addition to process colors;

2. objects that have been trapped by overprinting inks in specific areas of the
document; and

3. special types of images, such as duotones or tritones.

12 Color Separation Conventions for PostScript Language Programs 24 May 96

The color separation conventions specify how to structure PostScript lan-
guage documents which include images, spot colors, and overprinted inks, so
that they will separate properly, even when Level 1-style separations are
used.

If your users wish to create output for use with in-RIP separations, you do not
need to impose any restrictions on your application’s PostScript language
code; however, your output should include any relevant DSC color comments
as described in section 3.3 of this document. If, on the other hand, your users
choose to create output for export to a page layout or prepress program to
perform host-based separations, then your output should conform to the color
separation conventions described in the remainder of this document.

3 Color Related Operators and Comments

To conform to the color separation conventions, a document must begin by
using color separation convention operators and comments in its output,
when appropriate. Details about individual operators and comments are pro-
vided below. Other guidelines and restrictions are outlined later in this docu-
ment.

3.1 Convention Operators

The following “operators” are not defined in the

PostScript Language Refer-
ence Manual

, but should be used as pseudo-operators in your PostScript lan-
guage output. Separation applications from Adobe Systems and other
vendors will redefine these convention operators to separate your documents.
Your application should conditionally define procedures with these special
names, as shown later in this document.

obtains and returns an array identifying a custom or process ink named

key

whose color approximately equals the process color specified by the tints

cyan

,

magenta

,

yellow

, and

black

, each of which must be a number between 0
and 1.

key

 must be a string.

In normal use, the values

cyan, magenta, yellow,

and

 black

in the array will
be used as an approximation for printing on color printers. The

key

 is used by
a separation program to render items on the proper separation plane, at the
tint specified with the

setcustomcolor

 operator (defined below).

findcmykcustomcolor

cyan magenta yellow black key

findcmykcustomcolor

 array

3 Color Related Operators and Comments 13

sets the current color to the

tint

 of the custom or process color specified by

array

.

tint

 must be a number between 0 and 1, where a value of 0 corresponds
to a 0% ink coverage, a value of 1 corresponds to a 100% ink coverage, and
intermediate values correspond to intermediate coverages.

array

 must be pre-
viously returned by the

findcmykcustomcolor

 operator.

changes the current color to paint with a tint value of 1 -

gray

on all process
and custom color plates.

gray

 must be a number between 0 and 1. A tint
(1 -

gray

) value of 0 corresponds to a 0% ink coverage, a tint value of 1 corre-
sponds to a 100% ink coverage, and intermediate values correspond to inter-
mediate coverages.

setseparationgray

 may be used to render graphics, such as registration and
crop marks, that must appear on all separations.

renders an image whose sample values specify the amount of the custom or
process color identified by

array

, where an image sample value of 0 indicates
100% of the color, 1 indicates 0% of the color, and intermediate values corre-
spond to intermediate ink coverage.

width

,

height

,

bits/sample

,

matrix

 and

proc

 are as defined for the multiple-argument version of the

image

 operator.

array

 must be previously returned by the

findcmykcustomcolor

 operator

.

renders an image on all process and custom color plates.

width, height,
bits/sample, matrix

 and

proc

 are as defined for the multiple-argument version
of the

image

 operator.

separationimage

 may be used to render graphics,
such as registration and crop marks, that must appear on all separations.

sets the value of the overprint parameter. If overprint is false, painting a shape
causes knock-outs on all color planes (shape paints as white on all separa-
tions prior to rendering). If overprint is true, these knock-outs are not gener-
ated on unmarked color planes.

setcustomcolor

array tint

setcustomcolor

 —

setseparationgray

gray

setseparationgray

 —

customcolorimage

width height bits/sample matrix proc array

customcolorimage

 —

separationimage

width height bits/sample matrix proc

separationimage

 —

setoverprint

boolean

setoverprint

—

14 Color Separation Conventions for PostScript Language Programs 24 May 96

For example, when overprint is false, rendering a 50% magenta square will
first result in all color planes being painted with a white square, then the
magenta plane will be painted with a 50% tint square. When overprint is true,
only the magenta color plane is painted with a white square prior to rendering
the 50% tint square; no other color planes are affected.

Note The overprint behavior described above, which applies to output produced by
host-based separation applications, differs from the default overprint behav-
ior on a Level 2 RIP. On the host, when marking with a multi-component
color operator, such as setcmykcolor, non-zero ink component values are
treated as “no paint.” On the RIP, however, the non-zero ink values are inter-
preted as “paint white.” For example, a prepress application understands the
call “1 1 0 0 setcmykcolor” to mean, “paint 100% tint on the cyan and
magenta color planes; do not paint on the yellow and black color planes.”
However, a Level 2 RIP would interpret “1 1 0 0 setcmykcolor” to
mean, “paint 100% tint on the cyan and magenta color planes, and paint
white on the yellow and black planes.” Due to this variance in interpretation,
overprint results will differ between Level 1 host-based separations and Level
2 in-RIP separations when all of the following are true:

1. the overprint parameter is set to true,

2. marking is made using a multi-component color operator (such as
setcmykcolor), and

3. one or more of the ink component values is zero.

Applications can achieve consistent results between host-based and in-RIP
separations by marking overprinted process color objects using the
Separation color space, marking each non-zero component ink one compo-
nent at a time. For example, your Level 1-style code path to fill a rectangle
with process color may result in the following:

gsave

true setoverprint

1 1 0 0 setcmykcolor

0 0 100 100 rectfill % or Level 1 equivalent

grestore

The Level 2 code path for the same operation may redefine some operators,
so that the end result would be as follows:

gsave

true setoverprint

[/Separation (Cyan) /DeviceCMYK {0 0 0}] setcolorspace 1 setcolor

0 0 100 100 rectfill

[/Separation (Magenta) /DeviceCMYK {0 exch 0 0}] setcolorspace 1

setcolor

0 0 100 100 rectfill

grestore

3 Color Related Operators and Comments 15

returns the current value of the overprint parameter.

sets the current color overprinting characteristics for the process colors cyan,
magenta, yellow, and black, respectively. These values are numbers between 0
and 1, corresponding to the arguments to the setcmykcolor operator, or the
special value -1.

If cyan, magenta, yellow, and/or black equals -1, setcmykoverprint over-
prints painted areas on the (Process Cyan), (Process Magenta),
(Process Yellow), and/or (Process Black) separations, respectively, when the
overprint parameter is true (set by setoverprint). If overprint is false,
setcmykoverprint knocks out these areas with a tint of 0.

Note The setcmykoverprint operator has not been adopted by the industry. It
remains on the list of color convention operators because it has some per-
ceived usefulness, but it is not supported by any shipping host-based separa-
tion applications today.

3.2 Other Operators Affecting Color Separation

In addition to the convention operators, a number of standard PostScript
operators are used in the color separation process. These operators may be
redefined by separation utilities. For example, a separation program may
redefine painting operators such as fill and stroke in order to achieve correct
results on Level 1 devices when overprinting inks. Below we list some of
these color operators in order to clarify their expected behavior in a separa-
tion environment. When applicable, information is provided about any
restrictions in how these operators may be used. The behavior of these opera-
tors outside a separation environment is described in Section 8 of the
PostScript Language Reference Manual, Second Edition.

sets the current color to the process color defined by the (Cyan), (Magenta),
(Yellow), and (Black) tints 0, 0, 0, and 1 - gray, respectively. gray must be a
number between 0 and 1. Note that the inverse of gray is used since the
setcmykcolor operator interprets 1 as black, but the setgray operator inter-
prets 0 as black.

currentoverprint currentoverprint boolean

setcmykoverprint cyan magenta yellow black setcmykoverprint —

setgray gray setgray —

16 Color Separation Conventions for PostScript Language Programs 24 May 96

sets the current color to a process color that approximately equals the color
described by the parameters red, green, and blue, each of which must be a
number in the range 0 to 1.

Note: Use of the setrgbcolor operator is discouraged when a specific device
CMYK result is desired.

sets the current color to a process color that approximately equals the color
described by the parameters hue, saturation, and brightness, each of which
must be a number in the range 0 to 1.

Note: Use of the sethsbcolor operator is discouraged when a specific device
CMYK result is desired.

sets the current color to the process color defined by the (Cyan), (Magenta),
(Yellow), and (Black) tints cyan, magenta, yellow, and black, respectively,
each of which must be a number between 0 and 1.

renders an image whose sample values specify the tint of the process ink
(Black). In the rendered area, image sets the tints of the process inks (Cyan),
(Magenta), and (Yellow) to 0 (white).

In both the multi-operand and single-operand forms of the operator, the oper-
ands are as described in the PostScript Language Reference Manual, Second
Edition. Note, however, that only the DeviceGray case of the single-operand
version is currently supported by standard prepress applications.

renders an image whose sample values specify the tints of the process inks
(Process Cyan), (Process Magenta), (Process Yellow), and (Process Black).

setrgbcolor red green blue setrgbcolor —

sethsbcolor hue saturation brightness sethsbcolor —

setcmykcolor cyan magenta yellow black setcmykcolor —

image w h bits/sample matrix proc image —

 dict image —

colorimage w h bits/sample matrix proc1 proc2 proc3 proc4 true 4 colorimage —

3 Color Related Operators and Comments 17

For reasons of efficiency, only the multi-procedure CMYK form of the
colorimage operator is currently supported. The single- and multi-procedure
RGB forms and the single-procedure CMYK forms are not supported. As a
result, application software creating conforming PostScript language pro-
grams must perform the RGB to CMYK data conversion.

3.3 DSC Color Separation Convention Comments

In addition to using the operators listed above in your PostScript language
output, your application should also conform to the DSC (Document Struc-
turing Conventions). An application used to separate or import your Post-
Script language files may use the information provided by DSC comments. In
its user interface, for example, it may present a list of colors in the document,
to allow the user to select which color separations to print.

When using DSC comments such as %%DocumentCustomColors:, the
strings (Cyan), (Magenta), (Yellow), and (Black) are reserved for the four
process color inks cyan, magenta, yellow, and black, respectively. Custom
inks are identified by any arbitrary string not equal to any of the four process
ink names, such as (Adobe Red) or (Pantone 435).

Color Convention Promotion

Applications importing EPS files which use color should promote color name
information appropriately. Any custom or process colors used in the imported
EPS file should appear in the header comments of the document which con-
tains the EPS file. For example, if the document uses only process black, but
the EPS imported has the following header comment:

%%DocumentProcessColors: Cyan

%%DocumentCustomColors: (Custom Red)

%%CMYKCustomColor: 0 0.8 0.9 0 (Custom Red)

then, the header comments for the document containing the EPS should
reflect that information by having the header comments as follows:

%%DocumentProcessColors: Black Cyan

%%DocumentCustomColors: (Custom Red)

%%CMYKCustomColor: 0 0.8 0.9 0 (Custom Red)

If the definitions for custom colors are not consistent between the container
document and the EPS file, the application should attempt to resolve that con-
flict. For example, Adobe PageMaker prompts the user and does not allow
two colors used in one document to have conflicting definitions.

18 Color Separation Conventions for PostScript Language Programs 24 May 96

Color Header Comments

%%CMYKCustomColor: <CMYKcolor> …
<CMYKcolor> ::= <cya> <mag> <yel> <blk> <colorname>
<cya> :: = <real> (Cyan percentage)
<mag> ::= <real> (Magenta percentage)
<yel> ::= <real> (Yellow percentage)
<blk> ::= <real> (Black percentage)
<colorname> ::= <text> (Custom color name)

This comment provides an approximation of the custom color specified by
colorname. The four components of cyan, magenta, yellow, and black must
be specified as numbers from 0 to 1 representing the percentage of that process
color. The numbers are similar to the arguments to the setcmykcolor operator.
The colorname follows the same custom color naming conventions as the
%%DocumentCustomColors: comment.

%%DocumentCustomColors: { <colorname> ... } | (atend)
<colorname> ::= <text> (Custom color name)

This comment indicates the use of custom colors in a document. An applica-
tion arbitrarily names these colors, and their CMYK or RGB approximations
are provided through the %%CMYKCustomColor: or %%RGBCustomColor:
comments in the body of the document. Normally, the colorname specified
can be any arbitrary string except Cyan, Magenta, Yellow, or Black. If
imaging to a specific process layer is desired, these names may be used.

%%DocumentProcessColors: { <color> ... } | (atend)
<color> ::= Cyan | Magenta | Yellow | Black

This comment marks the use of process colors in the document.
Process colors are defined to be Cyan, Magenta, Yellow, and Black.
This comment is used primarily when producing color separations.
See also %%PageProcessColors:.

%%RGBCustomColor: <RGBcolor> …
<RGBcolor> ::= <red> <green> <blue> <colorname>
<red> ::= <real> (Red percentage)
<green> ::= <real> (Green percentage)
<blue> ::= <real> (Blue percentage)
<colorname> ::= <text> (Custom color name)

This comment provides an approximation of the custom color specified by
colorname. The three components of red, green, and blue must be specified
as numbers from 0 to 1 representing the percentage of that process color.
The numbers are similar to the arguments to the setrgbcolor operator.
The colorname follows the same custom color naming conventions as the
%%DocumentCustomColors: comment.

4 Color Separation Guidelines and Restrictions 19

Color Page Comments

%%PageCustomColors: { <colorname> ... } | (atend)
<colorname> ::= <text> (Custom color name)

This comment indicates the use of custom colors in the page. An application
arbitrarily names these colors, and their CMYK or RGB approximations are
provided through the %%CMYKCustomColor: or %%RGBCustomColor:
comments in the header section of the document. See the
%%DocumentCustomColors: comment.

%%PageProcessColors: { <color> ... } | (atend)
<color> ::= Cyan | Magenta | Yellow | Black

This comment marks the use of process colors in the page.
Process colors are defined as Cyan, Magenta, Yellow, and Black.
See the %%DocumentProcessColors: comment.

4 Color Separation Guidelines and Restrictions

Beyond using the color separation convention operators and DSC color com-
ments, your PostScript language programs should adhere to some additional
guidelines to work correctly with separation applications. Following the rec-
ommendations below should ensure successful separation of your composite
output.

4.1 Specific Requirements

1. Do not retrieve operator definitions from systemdict.

Separation programs will redefine the operators and convention operators
listed in sections 3.1 and 3.2 of this document, as well as the painting
operators such as fill, stroke, and show in order to create separations from
your composite job. For that reason, it is imperative that you use the load
operator when retrieving operator definitions from the dictionary stack,
rather than explicitly retrieving definitions from systemdict.

Do this:

/f /fill load def

not this:

/f systemdict /fill get def

2. Conditionally define color separation convention operators, so your job
will print properly in an in-RIP separation environment or when printed as
a color composite file. Section 5.1 of this document offers sample code for
doing this.

20 Color Separation Conventions for PostScript Language Programs 24 May 96

3. Conditionally define Level 2 and color extension operators.

A few of the PostScript operators used for describing color documents are
not supported by Level 1 PostScript output devices. For example,
setcmykcolor and colorimage are not available on early Level 1 black
and white devices. If your application or driver uses one of these opera-
tors, its code should define these operators to prevent receiving an
undefined error at print time, which can happen if a separation environ-
ment doesn’t provide a definition for these operators either. The definitions
should be made conditionally to allow a separation environment to rede-
fine the operators.

Using the sep_ops resource code in example 5.1 of this document will
prevent an undefined error with the setcmykcolor operator. Sample code
is offered in section 5.3, which demonstrates how to ensure that
colorimage is only called in environments that support that color exten-
sion.

4. Provide the user with the option to print using Level 1 painting operators
only.

Currently, host-based separation programs do not properly separate files
containing Level 2 painting operators, such as rectfill. Separation pro-
grams should revise their code to add such support in the near future. In
order to have your output work correctly with today’s applications, you
should offer your users an output path in which only Level 1 painting
operators are used. Code using Level 2 painting operators may appear to
separate correctly in host-based separation programs, but features such as
overprinting may not work correctly. The exception to this rule is the
colorimage operator and the dictionary form of the image operator for
grayscale images; these should both work correctly, as described in section
3.2 of this document.

Even though host-based separation is currently limited to Level 1 painting,
recall that jobs containing any valid PostScript language code can be sepa-
rated in the RIP on Level 2 imagesetters. For this reason, and because
future prepress applications will add support for Level 2 operators, we rec-
ommend that you also build Level 2 painting operator support into your
program now, as a user-selectable option. In that way, your users can
choose this option when printing to Level 2 imagesetters, and with host-
based separation programs in the future.

5. Provide user option to specify colors in DeviceCMYK or DeviceGray.

As with guideline 4 above, limitations of today’s host-based applications
require that your code limit its color space usage to Level 1 color spaces;

4 Color Separation Guidelines and Restrictions 21

specifically you should use the device-dependent color spaces:
DeviceCMYK and DeviceGray for compatibility with host-based separation
applications.

As with the Level 2 painting operators, we recommend that you provide
your users the option to specify and output colors using Level 2 device-
independent CIE color spaces. This will allow your users to achieve accu-
rate color matching when printing composite files or making color separa-
tions in-RIP.

6. Do not use restricted graphic state operators.

During the rendering of a host-based separation, the current color and the
halftone screen graphic state parameters need to be controlled in precise
ways. In order to simplify the implementation, the conventions require that
a PostScript language program not use the currentgray, currentrgbcolor,
currenthsbcolor, currentcmykcolor, setscreen, currentscreen, setcol-
orscreen, currentcolorscreen, or initgraphics operators. Note espe-
cially that this restriction precludes the use of setscreen and
setcolorscreen as an implementation for rendering pattern fills.

7. Concatenate your transfer function to the current transfer function.

Page descriptions should not contain transfer function modifications.
However, if your code does use a transfer function in a page description,
the function should be concatenated to the current transfer function as
shown below. Doing this allows your page description to properly inherit
any transfer effects that are introduced later in the prepress workflow, such
as an inverse transfer to achieve negatives.

Do this:

[{… your transfer proc …} /exec cvx currenttransfer /exec cvx]

cvx settransfer

instead of:

{… your transfer proc …} settransfer

8. Name custom colors and inks appropriately.

Each custom ink in a PostScript language program should be identified by
a distinct string. The strings (Cyan), (Magenta), (Yellow), and (Black), are
reserved for the four process inks cyan, magenta, yellow, and black,
respectively. Custom inks are identified by any arbitrary string not equal to
any of the four process ink names, such as (Adobe Red) or (Pantone 435).

Color names are case sensitive, therefore (Green) ≠ (green).

22 Color Separation Conventions for PostScript Language Programs 24 May 96

Note: Some applications currently on the market may also treat the following
names as process colors: (Process Cyan), (Process Magenta),
(Process Yellow), (Process Black). Application developers may wish to dis-
courage users from using the above color names when custom ink, rather
than process ink, is indicated.

9. Reset overprint parameter after grestore or restore.

In PostScript language Level 2, overprint is introduced as a parameter in
the graphics state. However, there is no overprint parameter or functional-
ity in Level 1, and most host-based separation programs do not treat over-
print as part of the graphic state. For that reason, after a grestore or
restore call your code should explicitly set the overprint parameter to its
value at the most recent gsave or save, respectively. By so doing, your
overprint parameter will have the same value whether your program is
executing in a Level 1 host-based separation environment or a Level 2
environment.

Similarly, after calling grestoreall, your program should reset the over-
print parameter to match the graphic state reset by the grestoreall call, to
make the results consistent in Level 1 and Level 2 environments. The code
below shows an example of how you may reset the overprint parameter.

Example 3: Resetting overprint parameter

…

false setoverprint

gsave % position 1

 true setoverprint

 gsave % position 2

 1 0 0 0 setcmykcolor

 false setoverprint

 drawbox

 grestore

 true setoverprint % explicitly set overprint to value at

 % last gsave (position 2)

 gsave

 0 1 1 0 setcmykcolor

grestoreall

false setoverprint % explicitly set overprint to value at

 % pos. 1 (the gstate restored by grestoreall)

…

10.Do not leave copies of userdict on the dictionary stack.

Use put and get to retrieve values from userdict, or use a temporary dic-
tionary to track variable values, as shown in code samples later in this doc-
ument.

4 Color Separation Guidelines and Restrictions 23

Following this guideline allows color separation programs to redefine
operators in their own dictionary, which is necessary for host-based color
separations to work. If your code leaves userdict on the dictionary stack
and another utility modifies any of the color operator definitions in
userdict, then the new userdict definition for the color operator will be
used rather than the one intended by the separation utility. Figure 2 shows
how the dictionary stack should be structured when your program is being
separated. On the left is the correct behavior.

Figure 2 Dictionary Stack in Separation Environment

4.2 More Free Advice

1. This document only describes how to create composite EPS files intended
for separation. Some applications, such as Adobe TrapWise, will accept
multi-page composite files to be separated, and impose further restrictions
on the file’s content and structure. For information on creating multi-page
files that work properly with such programs, contact the Adobe
Developers Association.

2. Do not rely on the initial graphic state having a default current color value
of “black”. Your code should explicitly call “0 setgray” or “0 0 0 1
setcmykcolor” to set the current color to black. This will allow separation
applications to properly separate black objects in your document, by rede-
fining setgray and setcmykcolor.

3. Use of the setrgbcolor or the sethsbcolor operators is discouraged when
specific CMYK results are desired; in such cases the user should specify
desired colors in CMYK, or the application should convert RGB or HSB
colors to CMYK and use the setcmykcolor operator. By so doing, your
application will have control over the RGB-to-CMYK or HSB-to-CMYK
mapping, and thus greater influence over the final results. In a Level 2 in-
RIP environment, you should allow your users to specify colors in the
device-independent CIE color spaces, to achieve accurate color matching
in their output.

userdict

globaldict

systemdict

dict stack (CORRECT):

separation dict

your local dict

userdict

globaldict

systemdict

dict stack (INCORRECT):

separation dict

userdict

24 Color Separation Conventions for PostScript Language Programs 24 May 96

5 Examples

Below are some sample programs which demonstrate conformance to the
color separation conventions. This code and sample output is in the
PostScript software development kit (SDK), available from the Adobe
Developers Association.

5.1 sep_ops ProcSet Resource

The sep_ops procset resource below contains sample code for conditionally
defining each of the convention operators. You should use the procset below,
or some equivalent, in your PostScript language output. Including convention
operator definitions such as these will allow your composite EPS file to print
correctly when sent directly to a printer, or in other environments where the
convention operators are not defined. Composite files using the procset below
should also separate correctly in-RIP, although overprint behavior will not be
consistent with host-based prepress software in some cases. (See setover-
print description in section 3.1 of this document for more details.)

Example 4: Sample code for conditionally defining color separation
convention operators

%%BeginResource: procset sep_ops 1.03 0

%%Title: (Separation Procs)

%%Version: 1.03 0

userdict /sep_ops 50 dict dup begin put

/bdef {bind def} bind def

/xdef {exch def} bdef

/colorimagebuffer { % helper proc called by customcolorimage

 0 1 2 index length 1 sub {

 dup 2 index exch get 255 exch sub 2 index 3 1 roll put

 }for

}bdef

/addprocs { % {proc1} {proc2} addprocs {{proc1}exec {proc2} exec}

 [3 1 roll

 /exec load

 dup 3 1 roll

] cvx

} bdef

/L1? {

 /languagelevel where {

 pop languagelevel 2 lt

 }{

 true

 } ifelse

} bdef

/colorexists { % tests to see if printing on color device

 statusdict /processcolors known {

 statusdict /processcolors get exec

5 Examples 25

 }{ % processcolors not present

 /deviceinfo where { % check for dps environment

 pop deviceinfo /Colors known {

 deviceinfo /Colors get % get color value from DPS

 statusdict /processcolors {% add processcolors entry

 deviceinfo /Colors known {

 deviceinfo /Colors get

 }{

 1

 } ifelse

 } put

 }{

 1

 } ifelse

 }{ % not in dps environment, assume monochrome

 1

 } ifelse

 } ifelse

 1 gt % return true for color devices, false for B&W

} bdef

/MakeReadOnlyArray { % size => [array]

 /packedarray where {

 pop packedarray

 }{

 array astore readonly

 } ifelse

} bdef

/findcmykcustomcolor where {

 pop

}{

 /findcmykcustomcolor {% c m y k name findcmykcustomcolor array

 5 MakeReadOnlyArray

 } bdef

} ifelse

/setoverprint where {

 pop

}{

 /setoverprint {% boolean setoverprint -

 pop

 } bdef

} ifelse

/setcustomcolor where {

 pop

}{

 L1? {

 /setcustomcolor { % array tint setcustomcolor -

 exch

 aload pop pop

 4 { 4 index mul 4 1 roll } repeat

 5 -1 roll pop

 setcmykcolor

 } bdef

 }{

 /setcustomcolor { % customcolorarray tint

26 Color Separation Conventions for PostScript Language Programs 24 May 96

 exch

 [exch /Separation exch dup 4 get exch /DeviceCMYK exch

 0 4 getinterval

 [exch /dup load exch cvx {mul exch dup}

 /forall load /pop load dup] cvx

] setcolorspace setcolor

 } bdef

 } ifelse

} ifelse

% initialize variables to avoid unintentional early binding

/ik 0 def /iy 0 def /im 0 def /ic 0 def

/imagetint {% converts cmyk to grayscale equiv w/red book formula

 % called by setcmykcolor and customcolorimage procs.

 ic .3 mul

 im .59 mul

 iy .11 mul

 ik add add add dup

 1 gt{pop 1}if

} bdef

/setcmykcolor where {

 pop

}{

 % setcmykcolor not supported, call setgray instead

 /setcmykcolor { % c m y k setcmykcolor --

 /ik xdef /iy xdef /im xdef /ic xdef

 imagetint

 1 exch sub setgray

 } bdef

} ifelse

/customcolorimage where {

 pop

}{

 L1? {

 /customcolorimage{ % w h bps matrix proc array

 gsave

 colorexists {

 aload pop pop

 /ik xdef /iy xdef /im xdef /ic xdef

 currentcolortransfer

 {ik mul ik sub 1 add} addprocs

 4 1 roll {iy mul iy sub 1 add} addprocs

 4 1 roll{im mul im sub 1 add} addprocs

 4 1 roll{ic mul ic sub 1 add} addprocs

 4 1 roll setcolortransfer

 /magentabuf 0 string def

 /yellowbuf 0 string def

 /blackbuf 0 string def

 {

 colorimagebuffer dup length magentabuf length ne{

 dup length dup dup

 /magentabuf exch string def

 /yellowbuf exch string def

 /blackbuf exch string def

5 Examples 27

 }if

 dup magentabuf copy yellowbuf copy

 blackbuf copy pop

 } addprocs

 {magentabuf}{yellowbuf}{blackbuf} true 4 colorimage

 }{ % non-color device

 aload pop pop /ik xdef /iy xdef /im xdef /ic xdef

 /tint imagetint def

 currenttransfer

 {tint mul 1 tint sub add} addprocs settransfer image

 }ifelse

 grestore

 } bdef

 }{ % Level 2 environment

 /customcolorimage { % w h bps matrix proc array

 gsave

 [exch /Separation exch dup 4 get exch /DeviceCMYK exch

 0 4 getinterval

 [exch /dup load exch cvx {mul exch dup}

 /forall load /pop load dup] cvx

] setcolorspace

 10 dict begin

 /ImageType 1 def

 /DataSource exch def

 /ImageMatrix exch def

 /BitsPerComponent exch def

 /Height exch def

 /Width exch def

 /Decode [1 0] def

 currentdict end

 image

 grestore

 } bdef

 } ifelse

} ifelse

/setseparationgray where {

 pop

}{

 L1? {

 /setseparationgray {

 1 exch sub dup dup dup setcmykcolor

 } bdef

 }{

 /setseparationgray {

 [/Separation /All /DeviceCMYK

 {dup dup dup}] setcolorspace 1 exch sub setcolor

 } bdef

 } ifelse

} ifelse

/separationimage where {

 pop

}{

 /separationimage {

 gsave

 1 1 1 1 (All)

28 Color Separation Conventions for PostScript Language Programs 24 May 96

 findcmykcustomcolor customcolorimage

 grestore

 } bdef

} ifelse

currentdict readonly pop end

%%EndResource

5.2 Line Art Example

This line art example uses spot and process colors to draw some simple
shapes and text. The color separations of this file should be as follows: The
word “Hello” should appear on the cyan plate. The word “World!” is
screened back on the process black plate, along with a solid black rectangle,
which is missing its bottom right corner. The Pantone Wm Red CV plate
should have a 3-point stroked rectangle, with an ‘l’ character knocked out of
it, and the Pantone Yellow CV plate should have a solid filled rectangle with
the letters “llo” knocked out of it. Note that the string “World” does not
knock out of any plate (ie. print as white on those plates) because it is set to
overprint.

Example 5: Code Sample demonstrating description of vector artwork

%!PS-Adobe-3.0 EPSF-3.0

%%BoundingBox: 141 407 279 629

%%Title: (my sample)

%%DocumentNeededResources: font Times-Roman

%%DocumentProcessColors: Cyan Black

%%DocumentCustomColors: (PANTONE Wm Red CV)

%%+ (PANTONE Yellow CV)

%%CMYKCustomColor: 0 0.79 0.91 0 (PANTONE Wm Red CV)

%%+ 0 0 1 0 (PANTONE Yellow CV)

%%Extensions: CMYK

%%EndComments

Type of Document Line art containing CMYK and
custom color objects

Color Separation Comments %%DocumentProcessColors:
%%DocumentCustomColors:
%%CMYKCustomColor:

Convention Operators findcmykcustomcolor
setcustomcolor, setoverprint

Other Color Operators setcmykcolor

Applications able to separate
this code

FrameMaker 4 for Mac,
Adobe PageMaker 6, Adobe
TrapWise 2, Adobe
PrePrint Pro 1, QuarkXPress 3,
Adobe Separator 5,
Macromedia FreeHand™ 5

5 Examples 29

%%BeginProlog

%%BeginResource: procset sep_ops 1.0 0

… put sep_ops resource definition here …

%%EndResource

%%EndProlog

%%BeginSetup

sep_ops begin

50 dict begin % temp dict for variable definitions

%%EndSetup

%%Page: 1 1

%%BeginPageSetup

/pgsave save def

/Times-Roman findfont 24 scalefont setfont

0 0 0 1 setcmykcolor

%%EndPageSetup

220 485 moveto 220 628 lineto 142 628 lineto

142 485 lineto 220 485 lineto closepath

fill

0 0 1 0 (PANTONE Yellow CV) 0 % c m y k colorname tint

/tint exch def

findcmykcustomcolor

false setoverprint

tint 1 exch sub setcustomcolor

249 410 moveto 249 556 lineto 181 556 lineto

181 410 lineto 249 410 lineto closepath

gsave fill grestore

0 0.79 0.91 0 (PANTONE Wm Red CV) 0

/tint exch def

findcmykcustomcolor true setoverprint

tint 1 exch sub setcustomcolor

3 setlinewidth stroke

1 0 0 0 setcmykcolor false setoverprint

150 450 moveto (Hello) show

0.5 setgray true setoverprint

(World!) show

pgsave restore

showpage

%%Trailer

end % temp dictionary

end % sep_ops

%%EOF

30 Color Separation Conventions for PostScript Language Programs 24 May 96

5.3 Image Examples

In addition to the examples below, a number of sample files which demon-
strate the use of binary and encoded image data may be found in the latest
version of the SDK.

CMYK Image Example

The following example paints an image of a blend (gradient) from process
yellow (left) to process cyan (right). When separated, a blend appears on the
process yellow plate, and a blend in the opposite direction appears on the
cyan plate. Notice that when printing composites, the program does not call
the colorimage operator in environments that do not support it, such as black
and white Level 1 printers. The image data contains interleaved scan lines of
cyan, magenta, yellow and black samples, followed by a scanline for a gray-
scale version of the image. In the event that colorimage is unknown, the
grayscale image data is used with the multiple-argument form of the image
operator.

Example 6: CMYK image using either colorimage or image operator

%!PS-Adobe-3.0 EPSF-3.0

%%BoundingBox: 100 100 300 300

%%Title: (Sample Color Image File)

%%DocumentProcessColors: Yellow Cyan

%%EndComments

%%BeginProlog

% define paintimage operator, conditional on environment

userdict /mydict 3 dict dup begin put

 /colorimage where { % colorimage is defined

 pop

 /paintimage {

 {currentfile cyanstr readhexstring pop}

 {currentfile magentastr readhexstring pop}

 {currentfile yellowstr readhexstring pop}

 {currentfile blackstr readhexstring pop

 currentfile graystr readhexstring pop pop}

 true 4 colorimage

 } bind def

Type of Document CMYK image

Color Separation Comments %%DocumentProcessColors:

Convention Operators (none)

Other Color Operators colorimage

Applications able to separate
this code

Adobe PageMaker 6,
Adobe TrapWise 2, Adobe
PrePrint Pro 1, QuarkXPress 3,
Macromedia FreeHand 5

5 Examples 31

 }{ % colorimage not defined (in L1 B&W environment)

 /paintimage {

 {currentfile cyanstr readhexstring pop pop

 currentfile magentastr readhexstring pop pop

 currentfile yellowstr readhexstring pop pop

 currentfile blackstr readhexstring pop pop

 currentfile graystr readhexstring pop}

 image

 } bind def

 } ifelse

currentdict readonly pop end

%%EndProlog

%%BeginSetup

mydict begin

50 dict begin % temp dict for EPS definitions

%%EndSetup

%%Page: 1 1

%%BeginPageSetup

/pgsave save def

0 setgray

%%EndPageSetup

/cyanstr 10 string def

/magentastr 10 string def

/yellowstr 10 string def

/blackstr 10 string def

/graystr 10 string def

100 100 translate

200 200 scale

10 10 8 [10 0 0 -10 0 10]

%%BeginData: 1068 Hex Bytes

paintimage

0019324B647D96AFC8E1 00000000000000000000

F9E0C7AE957C634A3118 00000000000000000000

E6E6DFD4CABEB2A69A90

0019324B647D96AFC8E1 00000000000000000000

F9E0C7AE957C634A3118 00000000000000000000

E6E6DFD4CABEB2A69A90

0019324B647D96AFC8E1 00000000000000000000

F9E0C7AE957C634A3118 00000000000000000000

E6E6DFD4CABEB2A69A90

0019324B647D96AFC8E1 00000000000000000000

F9E0C7AE957C634A3118 00000000000000000000

E6E6DFD4CABEB2A69A90

0019324B647D96AFC8E1 00000000000000000000

F9E0C7AE957C634A3118 00000000000000000000

E6E6DFD4CABEB2A69A90

0019324B647D96AFC8E1 00000000000000000000

F9E0C7AE957C634A3118 00000000000000000000

E6E6DFD4CABEB2A69A90

0019324B647D96AFC8E1 00000000000000000000

F9E0C7AE957C634A3118 00000000000000000000

E6E6DFD4CABEB2A69A90

0019324B647D96AFC8E1 00000000000000000000

F9E0C7AE957C634A3118 00000000000000000000

32 Color Separation Conventions for PostScript Language Programs 24 May 96

E6E6DFD4CABEB2A69A90

0019324B647D96AFC8E1 00000000000000000000

F9E0C7AE957C634A3118 00000000000000000000

E6E6DFD4CABEB2A69A90

0019324B647D96AFC8E1 00000000000000000000

F9E0C7AE957C634A3118 00000000000000000000

E6E6DFD4CABEB2A69A90

%%EndData

pgsave restore

showpage

%%Trailer

end % temp dictionary

end % mydict

%%EOF

Monochrome Image Example

This example describes a document containing a gradient of the spot color
Pantone Wm Red CV. When separations are produced, the gradient only
appears on the custom plate. When custom colors are converted to their pro-
cess color equivalents (an option provided by many prepress applications),
the gradient appears on both the process yellow and process magenta plates,
with appropriate tints applied.

Example 7: Monochrome Image Example

%%!PS-Adobe-3.0 EPSF-3.0

%%BoundingBox: 100 100 300 300

%%Title: (custom color monotone image)

%%DocumentCustomColors: (PANTONE Wm Red CV)

%%CMYKCustomColor: 0 0.79 0.91 0 (PANTONE Wm Red CV)

%%Extensions: CMYK

%%EndComments

%%BeginProlog

%%BeginResource: procset sep_ops 1.0 0

… put sep_ops resource definition here …

%%EndResource

Type of Document Monochrome image using spot
color ink.

Color Separation Comments %%DocumentCustomColors:
%%CMYKCustomColor:

Convention Operators findcmykcustomcolor
customcolorimage

Other Color Operators (none)

Applications able to separate
this code

Adobe PageMaker 6,
Adobe TrapWise 2, Adobe
PrePrint Pro 1, QuarkXPress 3,
Macromedia FreeHand 5

5 Examples 33

%%EndProlog

%%BeginSetup

sep_ops begin

50 dict begin % temp dict for EPS definitions

%%EndSetup

%%Page: 1 1

%%BeginPageSetup

/pgsave save def

0 setgray

%%EndPageSetup

/tempstr 10 string def

gsave

100 100 translate

200 200 scale

10 10 8 [10 0 0 -10 0 10]

{currentfile tempstr readhexstring pop}

0 0.79 0.91 0 (PANTONE Wm Red CV)

findcmykcustomcolor

%%BeginData: 226 Hex Bytes

customcolorimage

0019324B647D96AFC8E1

0019324B647D96AFC8E1

0019324B647D96AFC8E1

0019324B647D96AFC8E1

0019324B647D96AFC8E1

0019324B647D96AFC8E1

0019324B647D96AFC8E1

0019324B647D96AFC8E1

0019324B647D96AFC8E1

0019324B647D96AFC8E1

%%EndData

grestore

pgsave restore

showpage

%%Trailer

end % temp dict

end % sep_ops

%%EOF

34 Color Separation Conventions for PostScript Language Programs 24 May 96

5.4 Example of Printing on All Separations

Certain objects or images, such as printer’s marks, are printed on every sepa-
ration in order to aid in aligning plates and calibrating the press. Below is an
example of a document that puts printer’s marks on each plate via the
setseparationgray and separationimage convention operators. The docu-
ment also contains some simple objects painted in the process inks cyan,
magenta, yellow and black for testing purposes.

Example 8: Example using setseparationgray and separationimage

%%!PS-Adobe-3.0 EPSF-3.0

%%BoundingBox: 50 50 350 450

%%Title: (sample using separationgray and separationimage)

%%DocumentProcessColors: Cyan Magenta Yellow Black

%%EndComments

%%BeginProlog

%%BeginResource: procset sep_ops 1.0 0

… put sep_ops resource definition here …

%%EndResource

%%BeginResource: procset print_marks 1.0 0

%%Title: (Some Printer's Marks)

%%Version: 1.0 0

userdict /print_marks 10 dict dup begin put

/DrawTarget { % x y -> --

 gsave

 translate

 0 setseparationgray

 0.2 setlinewidth

 newpath

 0 0 3 0 360 arc fill

 0 0 5 0 360 arc stroke

 90 rotate

 4 {

 1 setseparationgray 0 0 moveto 0 3 lineto stroke

 0 setseparationgray 0 3 moveto 0 8 lineto stroke

Type of Document document containing targets,
crop marks, and gray ramp bar
which print on all separations.

Color Separation Comments %%DocumentProcessColors:

Convention Operators setseparationgray
separationimage

Other Color Operators setcmykcolor

Applications able to separate
this code

Adobe PageMaker 6,
Adobe TrapWise 2, Adobe
PrePrint Pro 1, QuarkXPress 3,
Macromedia FreeHand 5

5 Examples 35

 90 rotate

 } repeat

 grestore

} bind def

/DrawCrops { % llx lly h w -> --

 gsave

 0.2 setlinewidth

 %1 1 1 1 setcmykcolor

 0 setseparationgray

 4 2 roll translate

 0 -7 moveto 0 -15 lineto -7 0 moveto -15 0 lineto

 dup 0 translate

 0 -7 moveto 0 -15 lineto 7 0 moveto 15 0 lineto

 exch 0 exch translate

 0 7 moveto 0 15 lineto 7 0 moveto 15 0 lineto

 neg 0 translate

 0 7 moveto 0 15 lineto -7 0 moveto -15 0 lineto

 stroke grestore

} bind def

/DrawBar { % x y -> --

 gsave

 translate

 gsave

 110 10 scale

 11 1 8 [11 0 0 -1 0 1]

 {<001A334D668099B2CCE5FF>}

 separationimage

 grestore

 0.2 setlinewidth 0 setseparationgray

 0 0 moveto 110 0 lineto 0 10 rlineto

 -110 0 rlineto closepath stroke

 grestore

} bind def

currentdict readonly pop end

%%EndResource

%%EndProlog

%%BeginSetup

sep_ops begin

print_marks begin

50 dict begin % temp dict for variable definitions

0 setgray

%%EndSetup

%%Page: 1 1

%%BeginPageSetup

/pgsave save def

%%EndPageSetup

100 100 300 200 DrawCrops

80 250 DrawTarget

320 250 DrawTarget

200 80 DrawTarget

200 420 DrawTarget

145 440 DrawBar

36 Color Separation Conventions for PostScript Language Programs 24 May 96

1 0 0 0 setcmykcolor

100 400 moveto 150 0 rlineto 0 -100 rlineto -150 0 rlineto fill

0 1 0 0 setcmykcolor

300 100 moveto -50 0 rlineto 0 75 rlineto 50 0 rlineto fill

0 0 1 0 setcmykcolor

newpath

200 300 75 0 360 arc gsave fill grestore 0 0 0 1 setcmykcolor

stroke

pgsave restore

showpage

%%Trailer

end % temp dictionary

end % print_marks

end % sep_ops

%%EOF

37

Appendix A: Separation
Program Compatibility
Checklist

Below is a summary of application support for various types of color content.
The information in the chart assumes that the PostScript page description
uses DSC color convention comments and the convention operators, as
shown in examples earlier in this paper. Sample code for the listed types of
documents is available in the PostScript SDK, available from the Adobe
Developers Association.

key: √ = supported X = not supported

Contents of PostScript
Language File

Adobe PageMaker 6.0, Adobe
TrapWise 2.5, Adobe PrePrint Pro 1.5,
Macromedia FreeHand 5.0,
QuarkXPress 3.3

Adobe Separator 5.0
FrameMaker 4.0
(Mac only)

Line art painted with process color √ √

Line art painted with spot color √ √

Line art painted w/RGB (or HSB) √ √

Images w/CMYK data (interleaved
by scanline).

√ X

Documents which specify printers
marks or other objects using
setseparationgray or
separationimage.

√ X

Images w/RGB (or HSB) data X X

Process or Custom Color Monotone
Images, using customcolorimage
operator.

√ X

38 Appendix A: Separation Program Compatibility Checklist (5/24/96)

39

Appendix B: Advice to
Separation Program
Developers

Authors of software programs that support color separations should familiar-
ize themselves with the content of this technical note.

As stated a number of times throughout this document, there are limitations
in the capabilities of today’s prepress and page layout applications which pre-
vent other developers and users from taking full advantage of Level 2 fea-
tures. Below are some changes you may make in your separation code to
allow users to achieve better quality and more efficient output. We recom-
mend that separation programs do the following:

1. Add support for level 2 in-RIP separations to your program.

Example 1 of this document shows a simple example of how to create pro-
cess color separations in the RIP. Adding support for custom colors and
other color convention features may be fairly straightforward. As a starting
place, the definitions for the convention operators in the sep_ops procset
resource (section 5.1 of this paper) offer working definitions for the con-
vention operators that may be used in an in-RIP separation environment.
For example, the procset defines setcustomcolor to set a Separation color
as follows:

/setcustomcolor { % customcolorarray tint

exch

[exch /Separation exch dup 4 get exch /DeviceCMYK exch

 0 4 getinterval

[exch /dup load exch cvx {mul exch dup}

/forall load /pop load dup] cvx

] setcolorspace setcolor

} bind def

Adding support for in-RIP separations to your application provides several
benefits to your end-users:

• Increased printing performance.
Only one copy of the composite file needs to be sent for the entire separa-
tion job.

40 Appendix B: Advice to Separation Program Developers (5/24/96)

• Wider range of EPS support.
Your application can import and separate any EPS file into process color
separations; the users’ import choices are not limited to only those files
which conform to the color separation conventions set forth in this paper.
Furthermore, any EPS file that contains DSC color header comments can
be imported and separated into process and custom color separations.

• Both performance and quality benefits of Level 2 features.
When using in-RIP separations, your application can take advantage of
Level 2 operators, such as rectfill, which offer improved performance.
Your program can also use other Level 2 features such as painting in
device independent color spaces, which will give your users better color
matching.

2. Add redefinitions for level 2 painting operators to your Level 1-style
separations.

We strongly recommend that you modify your separation code to support
composite PostScript language files that paint objects with level 2 painting
operators, such as rectfill and rectstroke. If your application does not yet
work with the single-operand form of the image operator, support for
grayscale and CMYK images can be added fairly easily. This will benefit
your customers by making your Level 1-style separations more flexible.
For a complete list of painting operators, see the operator summary in
Section 8.1 of the PostScript Language Reference Manual, Second
Edition.

41

Appendix C: References

Adobe Systems Incorporated, PostScript Language Reference Manual, (2nd
Edition), Addison-Wesley Publishing Company, Inc., 1985.

Agfa Corporation, An Introduction to Digital Color Prepress, Volumes I and
II, Agfa Corporation, 1991.

Foley, J. et all, Computer Graphics: Principles and Practice, Addison-Wes-
ley, 1990. ISBN 0-201-12110-7.

Hunt, R., The Reproduction of Colour in Photography, Printing, and Televi-
sion, Fountain Press, 1987. ISBN 0-85242-356-X.

International Paper Company, Pocket pal, 15th Edition, International Paper
Company, Memphis, TN, 1992.

Judd, D.B., and Wyszecki, G., Color in Business, Science, and Industry (3rd
Edition), John Wiley & Sons, Inc., New York, 1975.

Molla, Dr. R. K., Electronic Color Separation, R.K. Printing & Publishing
Company, Montgomery, WV, 1988.

Wyszecki G., and Stiles, W.S., Color Science: Concepts and Methods, Quan-
titative Data and Formula, (2nd Edition), John Wiley & Sons, Inc., New
York, 1982.

42 Appendix C: References (5/24/96)

43

Index

C

%%CMYKCustomColor: 18
color names 21
color space

CIE 21, 23
DeviceCMYK 20, 21
DeviceGray 16, 20, 21

colorimage 16, 20, 30
comments

color header 18
color page 19
DSC 17

currentoverprint 15
customcolorimage 13, 32

D

Document Structuring Conventions
17

%%DocumentCustomColors: 18
%%DocumentProcessColors: 18

F

fill 19
findcmykcustomcolor 12, 13

I

image 13, 16, 20, 30

L

Level 1 6, 8
Level 2 6, 20
load 19

O

operators
color separation convention 12
Level 1 painting 20
painting 15
restricted 21

overprint 13, 15

P

%%PageCustomColors: 19
%%PageProcessColors: 19
ProcessColorModel 6

R

rectfill 20
%%RGBCustomColor: 18

S

SeparationColorNames 6
separationimage 13, 34
SeparationOrder 6
Separations 6
setcmykcolor 8, 9, 15, 16, 20, 23
setcmykoverprint 15
setcustomcolor 13
setgray 9, 15, 23
sethsbcolor 16, 23
setoverprint 13, 24
setrgbcolor 16, 23
setseparationgray 13, 34
show 19
stroke 19
systemdict 19

44 Index (24 May 96)

T

transfer function 21

U

userdict 22

	Color Separation Conventions for PostScript Language Programs
	1 Introduction
	2 Creating Separations from Composite Documents
	2.1 Level 2 in-RIP Separations
	2.2 Level 1-Style Separations
	2.3 Supporting Overprinting, Images and Spot Colors

	3 Color Related Operators and Comments
	3.1 Convention Operators
	3.2 Other Operators Affecting Color Separation
	3.3 DSC Color Separation Convention Comments

	4 Color Separation Guidelines and Restrictions
	4.1 Specific Requirements
	4.2 More Free Advice

	5 Examples
	5.1 sep_ops ProcSet Resource
	5.2 Line Art Example
	5.3 Image Examples
	5.4 Example of Printing on All Separations

	Appendix A: Separation Program Compatibility Checklist
	Appendix B: Advice to Separation Program Developers
	Appendix C: References
	Index

