

Using EPS Files in
PostScript Language Forms

Technical Note #5144

4 October 1996

Adobe Developer Support

PN LPS5144

Adobe Systems Incorporated

Corporate Headquarters
345 Park Avenue
San Jose, CA 95110
(408) 536-6000 Main Number
(408) 536-9000 Developer Support
Fax: (408) 536-6883

European Engineering Support Group
Adobe Systems Benelux B.V.
P.O. Box 22750
1100 DG Amsterdam
The Netherlands
+31-20-6511 355
Fax: +31-20-6511 313

Adobe Systems Eastern Region
24 New England
Executive Park
Burlington, MA 01803
(617) 273-2120
Fax: (617) 273-2336

Adobe Systems Co., Ltd.
Yebisu Garden Place Tower
4-20-3 Ebisu, Shibuya-ku
Tokyo 150
Japan
+81-3-5423-8169
Fax: +81-3-5423-8204

R

Software Fro em Ad bo
POST C IPRS T

Copyright

 1996 by Adobe Systems Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of the publisher. Any software referred to herein is furnished under license and may
only be used or copied in accordance with the terms of such license.

PostScript is a trademark of Adobe Systems Incorporated. All instances of the name PostScript in the
text are references to the PostScript language as defined by Adobe Systems Incorporated unless other-
wise stated. The name PostScript also is used as a product trademark for Adobe Systems’ implemen-
tation of the PostScript language interpreter.

Any references to a “PostScript printer,” a “PostScript file,” or a “PostScript driver” refer to printers,
files, and driver programs (respectively) which are written in or support the PostScript language. The
sentences in this book that use “PostScript language” as an adjective phrase are so constructed to rein-
force that the name refers to the standard language definition as set forth by Adobe Systems Incorpo-
rated.

PostScript, the PostScript logo, Display PostScript, Adobe, the Adobe logo, Adobe Illustrator, Adobe
PageMaker, Adobe PrePrint, Adobe TrapWise are trademarks of Adobe Systems Incorporated regis-
tered in the U.S.A. and other countries. FrameMaker is a registered trademark of Frame Technology
Corporation. Helvetica and Times are trademarks of Linotype AG and/or its subsidiaries. QuarkXPress
is a registered trademark of Quark, Inc. Macromedia FreeHand is a trademark of Macromedia, Inc.

This publication and the information herein is furnished AS IS, is subject to change without notice, and
should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorpo-
rated assumes no responsibility or liability for any errors or inaccuracies, makes no warranty of any
kind (express, implied or statutory) with respect to this publication, and expressly disclaims any and
all warranties of merchantability, fitness for particular purposes and noninfringement of third party
rights.

iii

Contents

Using EPS Files in
PostScript Language Forms

 5

1 Introduction 5

2 Storing the EPS file in VM 5
Example 1 Code Walk-through 5

3 Emulating 1-page forms in a Level 1 environment 9
Example 2 Code Walk-through 10

4 Performance Advantage of PostScript Forms 17

5 Storing an EPS on a writeable drive, for use in a Form 18
Steps for Writing an EPS file to disk for use in a form 19
Fine Tuning Example 3 22

6 Setting the Form Cache 23

7 Debugging Your Test Files 24
Emulating the execform operator 24
Testing whether a form is cached 25

8 Summary 25

Index

 27

iv 4 Oct 96

5

Using EPS Files in
PostScript Language Forms

1 Introduction

In PostScript Level 2, Adobe introduced the

execform

operator to support the
caching of graphical objects or “forms” for repeated use. In order to ensure
that each execution of a form produces the same output, it must be com-
pletely self-contained and conform to several constraints. One of these con-
straints is that all graphical content must be described within the form’s

PaintProc

. Since the

PaintProc

 is a procedure, it may not contain references
to in-line data. This restriction, as well as the implementation size limits for
procedures and strings, could present obstacles to placing an encapsulated
PostScript (EPS) file in a form.

Using an EPS file in a form is possible, however, provided the user has ade-
quate VM or a writeable storage drive. This paper will explain how to accom-
plish this, and will provide some emulation code for Level 1 devices.

2 Storing the EPS file in VM

Placing an EPS file into a form’s

PaintProc

 is not simply a matter of taking
the EPS file and bracketing it with curly braces. This would likely result in
PostScript error messages, for a number of reasons. For example, EPS files
often contain in-line data for fonts or images, which are inappropriate con-
tents for any procedure. (See the Q&A section of the

ADA News

, volume 3,
issue number 1, for an explanation of why in-line data will not work in a pro-
cedure body.) Instead, an EPS file can be executed by a

PaintProc

 with the
use of the

SubFileDecode

 filter. Example 1 below shows how this is done.

2.1 Example 1 Code Walk-through

In example 1, we store the contents of an EPS file in an array of strings. Then,
we define a form with a

PaintProc

 that consecutively executes each string in
the array. The primary tasks performed by the code are as follows:

1. The

readdata

 procedure, called prior to the inclusion of the EPS file, con-
sumes the EPS file and puts its contents into an array of strings,

EPSArray

.

6 Using EPS Files in PostScript Language Forms 4 Oct 96

We have chosen a string buffer size of 16000 bytes to avoid premature

VMerror

s as the result of fragmentation of VM.

The initial entry in

EPSArray

 is a 1-element array, containing a counter.
The counter is stored in an array so that it can be maintained in global VM,
and thereby be unaffected by calls to

save

 or

restore

 encountered when
executing the EPS file. The following

n

 entries are strings containing the
EPS contents.

n

 can be determined by dividing the size of the EPS file by
16000 (the string size) and rounding up. Lastly, an empty string must be
present in the array, immediately following the EPS strings, to indicate the
end of data.

2. After the EPS file, we place the comment:

% EOD_Marker_4386

in the
output file. The

SubFileDecode

 filter in the

readdata

 procedure uses this
comment as an end-of-data marker. The last four numbers are generated
randomly when the file is created. You may choose to use any numbers or
characters for this comment; however, it is important that you vary the
comment for each job to avoid problems that may occur when nesting exe-
cutions of

SubFileDecode

.

3. We define the form resource in the document set-up section of the output
file.

The

BBox

 entry of the form has the same value as that offered by the

%%BoundingBox:

 comment of the EPS file.

The

PaintProc

 procedure uses the

SubFileDecode

 filter to execute the
EPS file. The data acquisition procedure used with

SubFileDecode

,

AcquisitionProc

, traverses

EPSArray

, providing the EPS strings to the filter
on demand. The execution of the EPS file is contained within the context
of the

StartEPSF

 and

EPSFCleanUp

 procedures, which serve to create
and restore the proper PostScript environment for the EPS file. These pro-
cedures are identical to what would be used to import an EPS file, regard-
less of its use in a form; this process is described in section H.3.2 of the

PostScript Language Reference Manual, Second Edition

.

4. Within the individual page descriptions, we execute the form by calling
the

execform

 operator. Three pages, containing the EPS file, are printed in
this example.

Note Prior to executing the code below, your application should determine that
there is adequate free VM to store the EPS file. If there is limited free VM, you
may need to include the EPS file multiple times within the job, rather than
using forms. Alternatively, if the user’s output device has writeable storage,
you may choose to store the EPS file on disk, as described in section 5 of this
document.

2 Storing the EPS file in VM 7

Example 1:

Executing EPS in form’s PaintProc

%!PS-Adobe-3.0

%%Title: (Using EPS file in Form in VM)

%%BoundingBox: 0 0 612 792 % UPDATE FOR EACH EPS

%%DocumentProcessColors: Black % PROMOTE DSC COMMENTS FROM EPS

%%LanguageLevel: 2

%%Pages: 3

%%EndComments

%%BeginProlog

%%BeginResource: procset forms_ops 1.0 0

%%Title: (Forms Operators)

%%Version: 1.0

userdict /forms_ops 10 dict dup begin put

/StartEPSF { % prepare for EPSF inclusion

 userdict begin

 /PreEPS_state save def

 /dict_stack countdictstack def

 /ops_count count 1 sub def

 /showpage {} def

} bind def

/EPSFCleanUp { % clean up after EPSF inclusion

 count ops_count sub {pop} repeat

 countdictstack dict_stack sub {end} repeat

 PreEPS_state restore

 end % userdict

} bind def

/STRING_SIZE 16000 def % Best value to not fragment printer's VM

/ARRAY_SIZE 40 def % UPDATE FOR EACH EPS == filesize/16000 + 2

 % for initial counter and final empty string.

/buffer STRING_SIZE string def

/inputFile currentfile 0 (% EOD_Marker_4386) /SubFileDecode filter def

/readdata { % array readdata --

 1 { % put counter on stack

 % stack: array counter

 2 copy % stack: array counter array counter

 inputFile buffer readstring % read contents of currentfile into buffer

 % stack: array counter array counter string boolean

 4 1 roll % put boolean indicating EOF lower on stack

 STRING_SIZE string copy % copy buffer string into new string

 % stack: array counter boolean array counter newstring

 put % put string into array

 not {exit} if % if EOF has been reached, exit loop.

 1 add % increment counter

 } loop

 % increment counter and place empty string in next position

 1 add 2 copy () put pop

 currentglobal true setglobal exch

 0 1 array put % create an array for counter in global VM,

 % so as not to be affected by save/restore calls in EPS file.

 % place as first element of string array.

8 Using EPS Files in PostScript Language Forms 4 Oct 96

 setglobal % restore previously set value

} bind def

currentdict readonly pop end

%%EndResource

%%EndProlog

%%BeginSetup

% set MaxFormItem to be equivalent to MaxFormCache

<< /MaxFormItem currentsystemparams /MaxFormCache get >> setuserparams

% make forms procset available

forms_ops begin

userdict begin

% download form resource

%%BeginResource: form TestForm

/TestForm

10 dict begin

 /FormType 1 def

 /EPSArray ARRAY_SIZE array def

 /AcquisitionProc {

 EPSArray dup 0 get dup 0 get % array counter_array counter

 dup 3 1 roll % array counter counter_array counter

 1 add 0 exch put % increment counter

 get % use old counter as index into array, placing

 % next string on operand stack.

 } bind def

 /PaintProc {

 begin

 StartEPSF

 % May want to translate here, prior to executing EPS

 EPSArray 0 get 0 1 put

 //AcquisitionProc 0 () /SubFileDecode filter

 cvx exec

 EPSFCleanUp

 end

 } bind def

 /BBox [0 0 612 792] def % UPDATE FOR EACH EPS

 /Matrix [1 0 0 1 0 0] def

currentdict end def % TestForm

TestForm /EPSArray get

readdata

%%BeginDocument: (title.eps) % UPDATE FOR EACH EPS

 ... put EPS file here ...

%%EndDocument

% EOD_Marker_4386 % Put this comment after your EPS file so

 % SubFileDecode filter will reach end of data.

%%EndResource

%%EndSetup

%%Page: 1 1

%%BeginPageSetup

/pgsave save def

%%EndPageSetup

TestForm execform

3 Emulating 1-page forms in a Level 1 environment 9

%%PageTrailer

pgsave restore

showpage

%%Page: 2 2

%%BeginPageSetup

/pgsave save def

%%EndPageSetup

TestForm execform

%%PageTrailer

pgsave restore

showpage

%%Page: 3 3

%%BeginPageSetup

/pgsave save def

%%EndPageSetup

TestForm execform

%%PageTrailer

pgsave restore

showpage

%%Trailer

end % userdict

end % forms_ops

%%EOF

Note The above code does not produce any output as is. To use this code with an
EPS file, insert the file where you see the line, “% … put EPS file here ….”
Make other modifications to the code, as specified by the in-line comments.

3 Emulating 1-page forms in a Level 1 environment

Technical note #5113, “Emulation of the execform Operator,” offers sample
code for emulating forms in a Level 1 environment. However, this code
cannot be used when the form contains an EPS file. Notice that our technique
for including EPS files in forms requires a Level 2 or greater output device,
because it requires the use of a filter,

SubFileDecode

, introduced in Post-
Script Level 2. If your user is printing to a Level 1 device with a writeable
storage drive, then you can use the method described in section 5 of this doc-
ument to emulate forms. Otherwise, depending on how you are using the
form, you may be able to use the

copypage

 operator to achieve needed
results in a Level 1 environment. If you are using PostScript forms to print an
EPS file several times on one page, then the only option in Level 1 is to send
the EPS file to the printer multiple times. However, if you are using the form
once per page, for example, for a forms fill-out program, then

copypage

 can
be used as a Level 1 alternative.

Unfortunately,

copypage

 has the severe disadvantage that it prevents page
independence. For this reason, DSC-conforming files that use

copypage

must always use the “%%PageOrder: Special” header comment to alert con-
sumers that the file is page dependent. Programs that reorder pages or per-
form imposition should reject page-dependent files. If at all possible, your

10 Using EPS Files in PostScript Language Forms 4 Oct 96

application should detect when the user is printing to a Level 2 or greater
printer, or provide a Level 2-only option to the user, so that page-independent
Level 2 code can be used instead.

Example 2 below uses

copypage

 on Level 1 devices and PostScript forms on
all other devices.

copypage

 should only be used in Level 1 environments;
since the release of PostScript Level 2, use of

copypage

 is

strongly discour-
aged

. Appendix I of the

PostScript Language Reference Manual, Second
Edition

 states,

“The

copypage

 should not be used to simulate forms functionality; use
the

execform

 operator”.

PostScript forms offer better performance and reliability than the

copypage

operator and should always be used when available.

3.1 Example 2 Code Walk-through

Example 2 demonstrates how a typical form fill-out application may work.
The code determines if it is executing in either a Level 1 or a Level 2 or
greater environment. Various calls and definitions are conditionally made
depending on the environment encountered.

1. Define form or execute EPS file.

In the case of a Level 2 or greater device, the code is similar to Example 1
– a form dictionary is defined, and the

readdata

 procedure stores the EPS
file in an array of strings to be used by this form. On a Level 1 device, the
EPS code is executed when encountered in the file.

StartDoc

 and

EndDoc

procedure calls surround the execution of the EPS file in both cases.

2. Add data to fields in form.

Data is added to the form with a call to the

add_var_data

 procedure. This
procedure takes four strings as its operands and prints those strings in the
appropriate places on the form. For the Level 1 case,

add_var_data

 must
clear the data field area by painting white boxes in those fields; this is nec-
essary for the second and subsequent pages, since the data from the previ-
ous page will need to be erased. This step is not necessary when the
PostScript forms method is used.

3. Emit page.

To emit a page on a Level 2 device,

execform

is called, followed by a call
to

showpage

. On a level 1 device,

copypage

 is called, except for the final
page, in which case

 showpage

 is called

3 Emulating 1-page forms in a Level 1 environment 11

Note When printing to a Level 1 device, the contents of the included EPS file must
be Level 1-compatible.

Example 2:

Form emulation using copypage

%!PS-Adobe-3.0

%%Title: (Using EPS file in Form in VM)

%%BoundingBox: 0 0 612 792

%%DocumentProcessColors: Black

%%Pages: 3

%%PageOrder: Special

%%EndComments

%%BeginProlog

%%BeginResource: procset helper_ops 1.0 0

%%Title: (Helper Operators)

%%Version: 1.0

userdict /helper_ops 10 dict dup begin put

/L1? {

 /languagelevel where {

 pop languagelevel 2 lt

 }{

 true

 } ifelse

} bind def

/StartDoc {

 userdict begin

 /PreForm save def

 /showpage {} def

} bind def

/EndDoc {

 PreForm restore

 end % userdict

} bind def

/rfill { % llx lly w h rfill --

 gsave newpath

 4 -2 roll moveto % use x, y coordinates

 2 copy 0.0 lt exch 0.0 lt xor { % check for one arg only being neg

 dup 0.0 exch rlineto % do height first

 exch 0.0 rlineto

 neg 0.0 exch rlineto

 }{

 exch dup 0.0 rlineto % do width first

 exch 0.0 exch rlineto

 neg 0.0 rlineto

 } ifelse

 closepath

 fill grestore

} bind def

/add_var_data { % procedure to add variable data to fill in form

 /Times-Roman findfont 12 scalefont setfont

 L1? { % if Level 1, need to draw white boxes where data will be placed

12 Using EPS Files in PostScript Language Forms 4 Oct 96

 gsave

 1 setgray

 87 360 350 20 rfill

 190 430 350 20 rfill

 190 535 350 20 rfill

 190 600 350 20 rfill

 grestore

 } if

 97 370 moveto show

 200 440 moveto show

 200 545 moveto show

 200 610 moveto show

} bind def

/emitpage {

 L1? {

 add_var_data copypage

 }{

 TestForm execform add_var_data showpage

 } ifelse

} bind def

/emitlastpage {

 L1? {

 add_var_data showpage

 }{

 emitpage

 } ifelse

} bind def

currentdict readonly pop end

%%EndResource

%%BeginResource: procset forms_procs 1.0 0

%%Title: (Forms Procs)

%%Version: 1.0

userdict /forms_procs 10 dict dup begin put

/STRING_SIZE 16000 def

/ARRAY_SIZE 5 def % UPDATE DEPENDING ON SIZE OF INCLUDED DOCUMENT

 % (leave room for initial counter and final empty string)

/buffer STRING_SIZE string def

/readdata {

 L1? { % readdata --

 StartDoc

 }{ % array readdata --

 1 { % put counter on stack

 % stack: array counter

 2 copy % stack: array counter array counter

 inputFile buffer readstring % read contents of currentfile into buffer

 % stack: array counter array counter string boolean

 4 1 roll % put boolean indicating EOF lower on stack

 STRING_SIZE string copy % copy buffer string into new string

 % stack: array counter boolean array counter newstring

 put % put string into array

3 Emulating 1-page forms in a Level 1 environment 13

 not {exit} if % if EOF has been reached, exit loop.

 1 add % increment counter

 } loop

 % increment counter and place empty string in next position

 1 add 2 copy () put pop

 currentglobal true setglobal exch

 0 1 array put % create an array for counter in global VM,

 % so as not to be affected by save/restore calls in EPS file.

 % place as first element of string array.

 setglobal % restore previously set value

 } ifelse

} bind def

currentdict readonly pop end

%%EndResource

%%EndProlog

%%BeginSetup

helper_ops begin

forms_procs begin

userdict begin

L1? not {

 % set MaxFormItem to be equivalent to MaxFormCache

 1 dict begin

 /MaxFormItem

 currentsystemparams /MaxFormCache get

 def

 currentdict end

 setuserparams

}if

% download form

%%BeginResource: form TestForm

L1? not { % for > L1 case, define a form resource

/TestForm

10 dict begin

 /FormType 1 def

 /EPSArray ARRAY_SIZE array def

 /AcquisitionProc {

 EPSArray dup 0 get dup 0 get % array counter_array counter

 dup 3 1 roll % array counter counter_array counter

 1 add 0 exch put % increment counter

 get % use old counter as index into array, placing

 % next string on operand stack.

 } bind def

 /PaintProc {

 begin

 StartDoc

 EPSArray 0 get 0 1 put

 /AcquisitionProc load 0 () /SubFileDecode filter

 cvx exec

 end % form dict

 } bind def

 /BBox [29 222 583 759] def % UPDATE FOR INCLUDED DOCUMENT

 /Matrix [1 0 0 1 0 0] def

currentdict end def % TestForm

14 Using EPS Files in PostScript Language Forms 4 Oct 96

/inputFile currentfile 0 (% EOD_Marker_5882) /SubFileDecode filter def

TestForm /EPSArray get } if

readdata

%%BeginDocument: landscape_form % UPDATE TO NAME OF INCLUDED DOCUMENT

%!PS-Adobe-3.0 EPSF-3.0

%%Title: (sample landscape form)

%%CreationDate: (9/4/96) (4:48 PM)

%%BoundingBox: 29 222 583 759

%%DocumentProcessColors: Black

%%DocumentFonts: Helvetica-Bold

%%EndComments

%%BeginProlog

%%BeginResource: procset simple_graphics 1.0 0

%%Title: (Abbreviated Operators)

%%Version: 1.0

20 dict begin

 /m /moveto load def

 /l /lineto load def

 /L /lineto load def

 /S /stroke load def

 /s /stroke load def

 /g /setgray load def

 /f /fill load def

 /F /fill load def

 /w /setlinewidth load def

currentdict end /my_dict exch def

%%EndResource

%%EndProlog

%%BeginSetup

my_dict begin

%%EndSetup

%%Page: 1 1

%%BeginPageSetup

/pgsave save def

%%EndPageSetup

0 g

110.3759 735.6955 m 103.0572 728.2942 l 108.4972 728.3248 l

101.3305 722.3643 l 110.4505 722.4156 l 119.4104 722.4659 l

111.7768 728.4232 l 117.7768 728.4569 l 110.3759 735.6955 l

f

109.3986 723.2999 m 108.3653 719.9349 l 110.8125 719.1834 l

111.9398 722.8543 l

F

0.5 g

375 661 m 375 675 L 34 675 L 34 661 L 372 661 L

f

0 g

2 w

375 660 m 375 754 L 34 754 L 34 660 L 375 660 L

s

204.5 707 m

S

3 Emulating 1-page forms in a Level 1 environment 15

383 739 moveto

1 w

/Helvetica-Bold findfont 12 scalefont setfont

(ORDER\r) show

383 710 moveto

(REQUEST\r) show

383 681 moveto

(FORM) show

0.5 w

385 729 m 568 729 l S

385 699 m 568 699 l S

385 669 m 568 669 l S

2 w

578 227 m 578 650 L 34 650 L 34 227 L 578 227 L s

306 441 m S

57 601 m

(NAME:) show

0.5 w

565 595 m 565 638 L 50 638 L 50 595 L 565 595 L s

57 484 m (ADDRESS:) show

565 478 m 565 584 L 50 584 L 50 478 L 565 478 L s

57 429 m (PHONE:) show

565 423 m 565 466 L 50 466 L 50 423 L 565 423 L s

57 393 m (SERVICES REQUESTED:) show

565 239 m 565 411 L 50 411 L 50 239 L 565 239 L s

49.5 694.5 m

0.5 g

/Times-Bold findfont 30 scalefont setfont

(LEO S LANDSCAPING) show

46 698 m

0 g

(LEO S LANDSCAPING) show

86 663 m

1 g

/Helvetica-Bold findfont 12 scalefont setfont

(PROFESSIONAL LAWN & GARDEN CARE) show

%%PageTrailer

pgsave restore showpage

%%Trailer

end % my_dict

%%EOF

%%EndDocument

EndDoc % put this call after included EPS file. Followed by

% EOD_Marker_5882 % The % EOD_Marker_#### comment, which is needed so that

 % SubFileDecode filter will reach end of data.

%%EndResource

%%EndSetup

16 Using EPS Files in PostScript Language Forms 4 Oct 96

%%Page: 1 1

%%BeginPageSetup

/pgsave save def

%%EndPageSetup

(Joe Smith)

(1281 Market Street, San Jose, CA 95053)

(408-225-1818)

(Trim two pine trees in NE corner of lot.)

emitpage

%%PageTrailer

pgsave restore

%%Page: 2 2

%%BeginPageSetup

/pgsave save def

%%EndPageSetup

(Patty Davis)

(1441 East Willow Circle, Tucson, AZ 44388)

(210-555-1212)

(Plant 5 Azaleas under kitchen bay window.)

emitpage

%%PageTrailer

pgsave restore

%%Page: 3 3

%%BeginPageSetup

/pgsave save def

%%EndPageSetup

(Beatrice Miller)

(410 Park Avenue, New York, NY 12023)

(212-584-6789)

(Remove diseased palm tree. Replace with 10 gallon spruce.)

emitlastpage

%%PageTrailer

pgsave restore

%%Trailer

end % userdict

end % forms_procs

end % helper_procs

%%EOF

4 Performance Advantage of PostScript Forms 17

Figure 1

Output from first page of example 2

4 Performance Advantage of PostScript Forms

In addition to the major advantage of offering page-independence, and the
flexibility of printing multiple forms on one page, PostScript forms also offer
a performance advantage over using the

copypage

 operator. If a form is not
cached due to limited memory on the printer, then forms output can be slower
than

copypage

 use. However, when form caching occurs, forms may be 35%
to 90% faster than using

copypage

. Table 1 below shows the print times for
several EPS files, comparing the two printing methods. The EPS files range
from simple fill-out form templates, such as IRS tax forms, to complex
Adobe Illustrator

 graphics containing multiple objects and gradients.

The EPS files tested are as follows:

Type poster, Power drill, and Henry’s trip – Adobe Illustrator sample files
from the Illustrator 6.0 product CD for Macintosh.

Hands, Truck and Window – Adobe Photoshop

 sample files from the
Photoshop 3.0 product CD for Macintosh. Hands is a 468 x 414 pixel gray-
scale image; Truck is a 499 x 344 pixel RGB image; and Window is a 278 x
414 pixel RGB image.

Forms 1 through 4 – a selection of form templates. Form 1 is a half-page IRS
W-2 form template; forms 2 and 3 are pages 1 and 2 of an IRS W-5 form tem-
plate; and form 4 is a company’s 401K investment form template.

ORDER

REQUEST

FORM

NAME:

ADDRESS:

PHONE:

SERVICES REQUESTED:

LEO S LANDSCAPINGLEO S LANDSCAPING
PROFESSIONAL LAWN & GARDEN CARE

Trim two pine trees in NE corner of lot.

408-225-1818

1281 Market Street, San Jose, CA 95053

Joe Smith

18 Using EPS Files in PostScript Language Forms 4 Oct 96

The timing results below were made by placing calls to the

realtime

 operator
before and after the execution of a 10-page document, where the EPS file was
printed once per page. The forms were tested on two printers, a PostScript
version 2013.112 and a PostScript version 2014.106 printer. Both times are
listed next to the filename.

Table 1

Timing results comparing copypage and forms usage

filename time using time using % faster

copypage (ms) forms (ms) with forms

Hands

110,608 40,704 63%

64,384 19,024 70%

Henry’s trip

119,760 42,984 64%

69,736 20,440 71%

Truck

245,872 160,712 35%

114,632 30,752 73%

Power drill

113,928 59,416 48%

111,664 30,816 72%

Type poster

115,648 46,776 60%

60,360 15,512 74%

Window

185,992 107,048 42%

71,528 26,520 63%

Form 1

146,720 93,192 36%

75,504 35,200 53%

Form 2

195,680 119,936 39%

88,184 49,336 44%

Form 3

173,336 100,216 42%

77,920 37,528 52%

Form 4

82,328 10,784 87%

47,208 4,360 91%

5 Storing an EPS on a writeable drive, for use in a Form

Storing an EPS file in PostScript VM may be a reasonable solution for a job
that only uses one form. However, some EPS files may be too large to fit into
a printer’s available VM. Furthermore, there may be situations where a user
wants to use several complex EPS files on multiple pages. Or, a user may
wish to use EPS files in forms that need to be cached across several jobs. Fill-

5 Storing an EPS on a writeable drive, for use in a Form 19

ing up VM with EPS files is probably not the best solution in this case. A
better solution would be to store multiple complex forms on the device’s
writeable storage drive. If the user does not have adequate VM or a writeable
drive to store the EPS file, your application should fall back to sending the
EPS file down to the printer each time it is needed.

Rather than storing the EPS file in an array in VM, your application may tem-
porarily store the EPS file on the printer’s disk, use it in the form, and then
delete the file at the end of the print job. Example 3 below demonstrates how
to do this. If the user wants to download EPS files to be used in multiple jobs,
you may provide them with a utility to do so.

Example 3 is designed to work only on Level 2 devices with writeable stor-
age drives. The code could be modified, however, to work on a Level 1
printer with a writeable drive. To modify Example 3 to work in a Level 1
environment, first substitute calls to

execform

 with the emulation code pro-
vided in technical note #5113, “Emulation of the execform operator.” Sec-
ondly, remove any reference to the

SubFileDecode

 operator. This can be
handled one of two ways: 1) emulate the

SubFileDecode

 filter using code
that reads from currentfile one line at a time, using readline, and checks for
the end-of-data comment; or 2) modify the code so it works as three print
jobs. The first job downloads the file to the printer’s storage drive. The next
job uses the file in a form, and the last job deletes the EPS file from the drive.
Following the above guidelines, Example 3 can be modified to be a prefera-
ble Level 1 solution, rather than using copypage.

5.1 Steps for Writing an EPS file to disk for use in a form

Here are the tasks your application will need to perform:

1. Import the EPS file, using normal means.

2. Store the bounding box value to use later in the form definition.

3. Determine whether the printer is a level 2 printer with a writeable storage
drive.

You can do this by sending query code to the printer. Sample code for
querying for a writeable storage drive can be found in the PostScript Tech-
nologies column of ADA News newsletter, volume 5, issue 7. If you do not
have bi-directional communication with the printer, you can ask the user
to indicate if the destination printer is a Level 2 printer with a writeable
drive. If the printer’s PPD file has keyword *FileSystem with correspond-
ing value False, or *LanguageLevel keyword with corresponding value ‘1’,
then the printer is either a Level 1 device or does not support file systems.
In either case, the code in Example 3 will not work on such a device.

20 Using EPS Files in PostScript Language Forms 4 Oct 96

4. When writing out your PostScript language output, use code similar to
Example 3 below to:

a. write the EPS file to the printer’s hard drive,
b. define a form which executes the EPS file,
c. execute the form throughout the job, by calling execform, and
d. remove the EPS file from the printer’s hard drive.

Example 3: Using EPS file on a writeable drive as the contents of a form

%!PS-Adobe-3.0

%%BoundingBox: 35 35 427 457 % This will vary w/each job

%%DocumentProcessColors: Cyan % This will vary w/each job

%%LanguageLevel: 2

%%EndComments

% Example 3 takes a simple EPS file, which draws a Cyan square, and prints it

% 4-up on a single page, using forms.

%%BeginProlog

%%BeginResource: procset formtodisk_ops 1.0 0

%%Title: (Operators for Writing Form to Disk)

%%Version: 1.0

userdict /formtodisk_ops 10 dict dup begin put

/StartEPSF { % prepare for EPSF inclusion

 /PreEPS_state save def

 /dict_stack countdictstack def

 /ops_count count 1 sub def

 userdict begin

 /showpage {} def

} bind def

/EPSFCleanUp { % clean up after EPSF inclusion

 count ops_count {pop} repeat

 countdictstack dict_stack sub {end} repeat

 PreEPS_state restore

} bind def

/InputFile currentfile 0 (% End_Of_Data)

/SubFileDecode filter def

/Inbuf 4000 string def % create string to use as buffer.

/WriteInfo { % Writes contents of currentfile to disk until it reaches end of data

 % marker, which we have specified to be End_Of_data.

 { WriteTarget

 InputFile Inbuf readstring % read contents of InputFile into Inbuf

 3 1 roll % put boolean indicating EOF at bottom of stack

 writestring % write contents of Inbuf into file on disk

 not {exit} if % if EOF has been reached, exit loop.

 } loop

 WriteTarget closefile

} bind def

currentdict readonly pop end

%%EndResource

5 Storing an EPS on a writeable drive, for use in a Form 21

%%EndProlog

%%BeginSetup

formtodisk_ops begin

userdict begin

% create file named MyEPS in Files dir with write privileges

/WriteTarget (/Files/MyEPS) (w) file def

%%EndSetup

%%Page: 1 1

%%BeginPageSetup

/pg_one save def

%%EndPageSetup

WriteInfo

%%BeginDocument: cyansqr.eps % This will vary w/each job

%!PS-Adobe-3.0 EPSF-3.0

%%Title: (cyansqr.eps)

%%BoundingBox: 10 10 82 82

%%DocumentProcessColors: Cyan

%%EndComments

%%Page: 1 1

%%BeginPageSetup

/pgsave save def

%%EndPageSetup

1 0 0 0 setcmykcolor

10 10 moveto 72 0 rlineto 0 72 rlineto

-72 0 rlineto closepath fill

%%PageTrailer

pgsave restore showpage

%%Trailer

%%EOF

%%EndDocument

% End_Of_Data % put this marker after your EPS file so

 % SubFileDecode filter will reach end of data.

% Define form which executes EPS file.

10 dict begin

 /FormType 1 def

 /PaintProc

 {

 pop % remove form dictionary from stack

 StartEPSF

 -10 -10 translate % move lowerleft corner of EPS to origin.

 (/Files/MyEPS) run

 EPSFCleanUp

 } def

 /BBox [0 0 72 72] def % Based on the EPS bounding box.

 % Should be [0 0 urx-llx ury-lly]

 /Matrix [1 0 0 1 0 0] def

currentdict end

/EPSForm exch def

gsave

35 35 translate

 EPSForm execform

0 350 translate

 EPSForm execform

22 Using EPS Files in PostScript Language Forms 4 Oct 96

320 0 translate

 EPSForm execform

grestore

355 35 translate

 EPSForm execform

%%PageTrailer

pg_one restore showpage

%%Trailer

(/Files/MyEPS) deletefile

end % userdict

end % formtodisk_ops

%%EOF

5.2 Fine Tuning Example 3

As you are fine tuning your code, keep the following in mind.

1. Cleaning up after an error occurs

Using the code in Example 3, if your print job fails after partial execution, a
file or partial file may remain on the printer’s hard drive. Your code should
detect errors and delete any remnant files on the disk, in the event of a Post-
Script error.

2. Proper file naming

Your application should not use the same filename for each print job, because
multiple users may be printing to the same printer simultaneously, using your
application. This would cause one or more users to experience problems,
such as file access errors. You may want to choose some part of the user’s
system name or id as a portion of the filename to prevent such an occurrence.

If you offer your users a form-downloading utility, then allow them to name
the files, so they will recognize the filename if they choose to delete it later.

3. Checking for adequate storage space

Even though a printer may have a writeable drive attached, this doesn’t
ensure that the drive has adequate storage for the user’s EPS file(s). You
should handle the event of insufficient storage space by either querying for a
large amount of free space in your query code, or doing a query prior to send-
ing the job to check for estimated amount of storage that will be required by
the EPS file(s). A call to devstatus with the devicename on the stack will
return the amount of free storage space available on that device.

6 Setting the Form Cache 23

6 Setting the Form Cache

When PostScript forms were first introduced, their primary perceived use was
for forms fill-out applications, to be used for tax forms, medical forms, and
the like. These types of forms probably do not need more than 100,000 bytes
of cache space, the default value of MaxFormCache for many devices. The
trend more recently is to use Postscript forms for the personalization of more
complex graphics, such as contained in Adobe Illustrator or Photoshop files.
These more complex graphics require more storage than the default cache
permits. Table 3 shows the amount of cache needed by some complex Adobe
Illustrator and Photoshop files, as compared with more traditional form tem-
plates. Cache size consumed by a form can vary from device to device. To
demonstrate this we offer the cache size for two devices: a PostScript version
2013.112 device and a version 2014.106 device. The files used for the cache
comparisons are the same files used in the timing tests, described in section 4.

Table 2 Cache sizes for various types of forms

filename cache consumed cache consumed
on 2013.112 on 2014.106
printer (bytes) printer (bytes)

Henry’s trip 91,196 92,264
Power drill 240,080 241,148
Type poster 268,752 268,796
Hands 199,120 199,164
Truck 182,736 182,780
Window 125,392 125,436
Form 1 21,208 9,724
Form 2 91,656 78,956
Form 3 24,576 26,108
Form 4 13,776 13,820

If your users want to use complex graphics in their forms, you may provide
them with a utility to increase MaxFormCache. This value cannot be
increased within your page description because it is a system parameter,
which will persist beyond the scope of the print job. Your utility may send the
following code, on the user’s request, to increase MaxFormCache:

<< /Password 0 /MaxFormCache 250000>> setsystemparams

The above example increases the form cache to a maximum of 250,000 bytes.
The password value may be non-zero if specified by the printer manufacturer
or modified by the system administrator.

24 Using EPS Files in PostScript Language Forms 4 Oct 96

All of the examples in this paper also contain the following code, or its equiv-
alent, to increase MaxFormItem to the same value as MaxFormCache:

<< /MaxFormItem currentsystemparams /MaxFormCache get >>

setuserparams

7 Debugging Your Test Files

7.1 Emulating the execform operator

Debugging your forms code can be frustrating. You probably won’t receive
intelligent error messages back from the PostScript interpreter, if any, if your
job fails somewhere in the form’s PaintProc. For example, if your EPS file
contains an undefined value, you would get the following message:

%%[Error: undefined; OffendingCommand: Testform]%%

indicating that an undefined error occurred some time during the executing of
Testform by execform.

You may wish to substitute a call to execform with a procedure call, when an
error is encountered. For example, you can replace the line:

TestForm execform

in Example 1, with:

gsave

 TestForm dup dup dup

 /Matrix get concat

 /BBox get rectclip

 newpath

 readonly

 /PaintProc get exec

grestore

The above code performs steps similar to the execform operator, as
described in section 4.7.1 of the PostScript Language Reference Manual,
Second Edition. Although no caching will occur using this code, it will be
helpful for debugging purposes as you will receive more meaningful error
messages. Going back to our previous example of having an undefined name
in our file; resending the file using the code above yields a more meaningful
error message:

%%[Error: undefined; OffendingCommand: undefined_name]%%

8 Summary 25

7.2 Testing whether a form is cached

Section 6.1 of technical note #5113, “Emulation of the execform Operator,”
offers sample code for determining the amount of cache consumed by a form.
You may use this code to determine if a form is cached. A return value of ‘0’
indicates the form was not cached.

An alternative test, if you have bi-directional communication with the printer,
is to put a print statement somewhere in your PaintProc. For example, you
could add the line: “(I’m in the PaintProc) print flush” to your PaintProc. You
will get this message back from the printer every time the procedure is inter-
preted. When the cached form is used, you will not receive this message.

8 Summary

Using the code in this paper, you may offer your users the performance bene-
fit of PostScript forms, along with the flexibility of imported EPS files. For
forms fill-out applications, copypage may be used to emulate forms on Level
1 devices. However, PostScript forms should be used on Level 2 and greater
devices to allow page-independence, as well as the flexibility of printing a
form multiple times on a single page.

26 Using EPS Files in PostScript Language Forms 4 Oct 96

27

Index

Symbols

%%BoundingBox 6
%%PageOrder 9

A

Adobe Illustrator 23
Adobe Photoshop 23

C

cache 23, 25

copypage

 9, 10, 17, 25

D

devstatus

 22

E

emulation 9, 25
errors 22, 24

execform

 6, 10, 19, 20, 24

F

filename 22
form caching 17

L

Level 1 9

M

MaxFormCache

 23

MaxFormItem

 24

P

page-dependent 9
PaintProc 5, 6, 24, 25

R

realtime

 18

restore

 6

S

save

 6

showpage

 10
storage drive 19
SubFileDecode 19

SubFileDecode

 5, 6, 19

V

VM 6, 18

