
Adobe Systems Incorporated

Display PostScript System

Client Library Reference Manual

15 April 1993

Adobe Systems Incorporated

Adobe Developer Technologies
345 Park Avenue
San Jose, CA 95110
http://partners.adobe.com/

Copyright © 1989-1993 by Adobe Systems Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of the publisher. Any software referred to herein is furnished under license and may
only be used or copied in accordance with the terms of such license.

PostScript, the PostScript logo, Display PostScript, and the Adobe logo are trademarks of Adobe
Systems Incorporated which may be registered in certain jurisdictions. X Window System is a
trademark of the Massachusetts Institute of Technology. UNIX is a registered trademark of UNIX
Systems Laboratory. Other brand or product names are the trademarks or registered trademarks of their
respective holders.

This publication and the information herein is furnished AS IS, is subject to change without notice, and
should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems
Incorporated assumes no responsibility or liability for any errors or inaccuracies, makes no warranty
of any kind (express, implied or statutory) with respect to this publication, and expressly disclaims any
and all warranties of merchantability, fitness for particular purposes and noninfringement of third
party rights.

CL-iii

C
L

Contents

1 About This Manual CL-1

2 About the Client Library CL-3

3 Overview of the Client Library CL-4
Phases of an Application CL-4
Header Files CL-5
Wrapped Procedures CL-5

4 Basic Client Library Facilities CL-7
Contexts and Context Data Structures CL-7
System-Specific Context Creation CL-7
Example of Context Creation CL-7
The Current Context CL-9
Sending Code and Data to a Context CL-9
Spaces CL-13
Interrupts CL-13
Destroying Contexts CL-13

5 Handling Output from the Context CL-14
Callback Procedures CL-14
Text Handlers CL-15
Text Handler Example CL-16
Error Handlers CL-17
Error Recovery Requirements CL-18
Backstop Handlers CL-19

6 Additional Client Library Facilities CL-20
Chained Contexts CL-20
Encoding and Translation CL-21
Buffering CL-22
Synchronizing Application and Context CL-23
Forked Contexts CL-24

7 Programming Tips CL-25
Using the Imaging Model CL-26

8 Example Application Program CL-28
Example C Code CL-29
Wrap Example CL-32
Description of the Example Application CL-32

CL-iv Contents

9 dpsclient.h Header File CL-35
Procedure Types CL-35
dpsclient.h Data Structures CL-36
dpsclient.h Procedures CL-37

10 Single-Operator Procedures CL-42
Setting the Current Context CL-42
Types in Single-Operator Procedures CL-43
Guidelines for Associating Data Types with Single-Operator Procedures
CL-43
dpsops.h Procedure Declarations CL-45

11 Runtime Support for Wrapped Procedures CL-54
Sending Code for Execution CL-54
Receiving Results CL-55
Managing User Names CL-56
Binary Object Sequences CL-57
Extended Binary Object Sequences CL-59
dpsfriends.h Data Structures CL-59
dpsfriends.h Procedures CL-63

Index
See Global Index to the Display PostScript Reference Manuals

CL-v

C
L

List of Figures

Figure 1 The Client Library link to the PostScript interpreter CL-3
Figure 2 Creating an application CL-29

CL-vi List of Figures

CL-vii

C
L

List of Tables

Table B.1 C equivalents for exception macros CL-74

CL-viii List of Tables

CL-ix

C
L

List of Examples

Example 1 Wrap that draws a black box CL-6
Example 2 Context creation for the X Window System CL-8
Example 3 Reading hexadecimal image data from a file and sending it to a context CL-12
Example 4 Text handler CL-16
Example 5 Simple X Window System application CL-29
Example 6 PSWDrawBox wrap for example application CL-32
Example 7 Implementation of wrap return values CL-56
Example A.1 Error handler implementation CL-67
Example B.1 Exception handling macros—enclosing a code block CL-75
Example B.2 Exception handling macros—within a code block CL-75
Example B.1 Exception handler CL-78
Example B.2 Propagating exceptions with RERAISE CL-78

CL-x List of Examples

CL-1

C
L

Client Library
Reference Manual

1 About This Manual

ThisClient Library Reference Manual describes Client Library procedures and
conventions, which form the programming interface to the Display PostScript
system.

Section 2, “About the Client Library,” introduces the Client Library and provides
a diagram of its relationship to the Display PostScript system.

Section 3, “Overview of the Client Library,” gives a brief overview of the Client
Library, describes the phases of an application program’s interaction with the
Display PostScript system, introduces the C header files that represent the Client
Library interface, and discusses the use of wrapped procedures.

Section 4, “Basic Client Library Facilities,” explains the basic concepts an
application programmer needs to know before writing a simple application for
the Display PostScript system.

Section 5, “Handling Output from the Context,” discusses callback procedures of
various kinds, including text and error handlers.

Section 6, “Additional Client Library Facilities,” explains advanced Client
Library concepts including contextchaining, encoding and translation, buffering,
application/context synchronization, and forked contexts.

Section 7, “Programming Tips,” provides programming tips and summarizes
notes and warnings.

Section 8, “Example Application Program,” lists and documents an application
program that illustrates how to communicate with the Display PostScript system
using the Client Library.

Section 9, “dpsclient.h Header File,” documents the basic Client Library data
structures and procedures found indpsclient.h.

Section 10, “Single-Operator Procedures,” describes the single-operator
procedures that implement PostScript™ operators and contains a listing of the
dpsops.h header file in which they are declared.

CL-2 Client Library Reference Manual 15 April 1993

Section 11, “Runtime Support for Wrapped Procedures,” explains the
dpsfriends.h header file and its support of C-callable procedures produced by the
pswrap translator.

Appendix A provides an example error handler for the X Window System™

implementation of the Display PostScript system.

Appendix B explains how an application can recover from PostScript language
errors and provides an example of an exception handler.

Client Library Reference Manual 2 About the Client Library CL-3

C
L

2 About the Client Library

The Client Library is your link to the Display PostScript system, which makes
the imaging power of the PostScript interpreter available for displays as well as
for printing devices. An application program can display text and images on the
screen by calling Client Library procedures. These procedures are written with a
C language interface. They generate PostScript language code and send it to the
PostScript interpreter in the window system for execution. This process is
illustrated in Figure 1.

Figure 1 The Client Library link to the PostScript interpreter

You can customize and optimize applications by writing PostScript language
programs. Thepswrap translator produces application-defined PostScript
language programs with C-callable interfaces.

Note: The terms “input” and “output” apply to the execution context in the PostScript
interpreter, not to the application. An application “sends input” to a context and
“receives output” from a context. This usage prevents ambiguity that might exist
since input with respect to the context is output with respect to the application;
and vice versa.

Application
Client
Library

PostScript
interpreter

Screen

Window system

CL-4 Client Library Reference Manual 15 April 1993

3 Overview of the Client Library

The Client Library is a collection of procedures that provide an application
program with access to the PostScript interpreter. It includes procedures for
creating, communicating with, and destroying PostScript execution contexts. A
context consists of all the information (or state) needed by the PostScript
interpreter to execute a PostScript language program. In the Client Library
interface, each context is represented by aDPSContextRec data structure
pointed to by aDPSContext handle.PostScript execution contexts are described
in section 7.1, “Multiple Execution Contexts,” ofPostScript LanguageReference
Manual, Second Edition.

It might appear that Client Library procedures directly produce graphical output on
the display. In fact, these procedures generate PostScript language statements and
transmit them to the PostScript interpreter for execution. The PostScript
interpreter then produces graphical output that is displayed by device-specific
procedures in the Display PostScript system. In this way, the Client Library
makes the full power of thePostScript interpreter and imaging model available to
a C language program.

The recommended way to send PostScript language code to the interpreter is to
call wrapped procedures generated by thepswrap translator. For simple
operations, you can send PostScript language fragments to the interpreter by
calling single-operator procedures, orsingle-ops, each the equivalent of a single
PostScript operator.

3.1 Phases of an Application

The following describes a typical application program, written in C, using the
Client Library in the different phases of its operation:

• Initialization. The application establishes communication with the Display
PostScript system. It then calls Client Library procedures to create a context
for executing PostScript language programs. It also performs other
window-system-specific initialization. Higher-level facilities, such as toolkits,
perform initialization automatically.

• Execution. Once an application is initialized, it displays text and graphics by
sending PostScript language programs to the interpreter. These programs can
be of any complexity from a single-operator procedure to a program that
previews full-color illustrations. The Client Library sends the programs to the
PostScript interpreter and handles the results received from the interpreter.

• Termination. When the application is ready to terminate, it calls Client Library
procedures to destroy its contexts, free their resources, and end the
communications session.

Client Library Reference Manual 3 Overview of the Client Library CL-5

C
L

3.2 Header Files

The Client Library procedures that an application can call are defined in C header
files, also calledinclude or interface files. The Client Library interface
represented by these header files can be extended in an implementation, and the
extensions are compatible with the definitions given in this appendix. There are
four Client Library–defined header files and one or more system-specific header
files.

• dpsclient.hprovides support for managing contexts and sending PostScript
language programs to the interpreter. It supports applications as well as
application toolkits. It is always present.

• dpsfriends.hprovides support for wrapped procedures created bypswrap, as
well as data representations, conversions, and other low-level support for
context structures. It is always present.

• dpsops.hprovides single-operator procedures that require an explicit context
parameter. It is optional.

• psops.hprovides the single-operator procedures that implicitly derive their
context parameter from the current context. It is optional.

• One or more system-specific header files provide support for context creation.
These header files can also provide system-specific extensions to the Client
Library, such as additional error codes.

3.3 Wrapped Procedures

The most efficient way for an application program to send PostScript language
code to the interpreter is to use thepswrap translator to producewrapped
procedures, that is, PostScript language programs that are callable as C
procedures. A wrapped procedure (wrap for short) consists of a C language
procedure declaration enclosing a PostScript language body. There are several
advantages to using wraps:

• Complex PostScript programs can be invoked by a single procedure call,
avoiding the overhead of a series of calls to single-operator procedures.

• You can insert C arguments into the PostScript language code at runtime
instead of having to push the C arguments onto the PostScript operand stack in
separate steps.

• Wrapped procedures can efficiently produce custom graphical output by
combining operators and other elements of the PostScript language in a variety
of ways.

• The PostScript language code sent by a wrapped procedure is interpreted
faster than ASCII text.

CL-6 Client Library Reference Manual 15 April 1993

You prepare a PostScript language program for inclusion in the application by
writing a wrap and passing it through thepswrap translator. The output ofpswrap
is a procedure written entirely in the C language.It contains the PostScript
language body as data. This has been compiled into a binary object sequence (an
efficient binary encoding), with placeholders for arguments to be inserted at
execution. The translated wraps can then be compiled and linked into the
application program.

When a wrapped procedure is called by the application, the procedure’s
arguments are substituted for the placeholders in the PostScript language body of
the wrap. A wrap that draws a black box is defined in Example 1.

Example 1 Wrap that draws a black box

Wrap definition:

defineps PSWBlackBox(float x, y)

gsave

0 0 0 setrgbcolor

x y 72 72 rectfill

grestore

endps

pswrap produces a procedure that can be called from a C language program as
follows (the values shown are only examples):

PSWBlackBox(12.32, –56.78);

This procedure replaces thex andy operands ofrectfill with the corresponding
procedure arguments, producing executable PostScript language code:

gsave

0 0 0 setrgbcolor

12.32 –56.78 72 72 rectfill

grestore

All wrapped procedures work the same way as Example 1. The arguments of the
C language procedure must correspond in number and type to the operands
expected by the PostScript operators in the body of the wrap. For instance, a
procedure argument declared to be of typefloat corresponds to a PostScript real
object; an argument of typechar * corresponds to a PostScript string object; and
so on.

The nominal outcome of calling a wrapped procedure is the transmission of
PostScript language code to the interpreter for execution, normally resulting in
display output. The Client Library can also provide the means, on a
system-specific basis, to divert transmission to another destination, such as a
printer or a text file.

Client Library Reference Manual 4 Basic Client Library Facilities CL-7

C
L

4 Basic Client Library Facilities

This section introduces the concepts you need to write a simple application
program for the Display PostScript system, including: creating a context, sending
code and data to a context, and destroying a context.

4.1 Contexts and Context Data Structures

An application creates, manages, and destroys one or more contexts. A typical
application creates a single context in a single private VM (space). It then sends
PostScript language code to the context to display text, graphics, and scanned
images on the screen.

The context is represented by a record of typeDPSContextRec. A handle to this
record (a pointer of typeDPSContext) is passed explicitly or implicitly with
every Client Library procedure call. In essence, theDPSContext handle is the
context.

A context can be thought of as a destination to which PostScript language code is
sent. The destination is set when the context is created. In most cases, the code
draws graphics in a window or specifies how a page is printed. Other destinations
include a file (for execution at a later time) or the standard output; multiple
destinations are allowed. Theexecution by the interpreter of PostScript language
code sent to a context can be immediate or deferred, depending on the context
creation procedure called and on the setting ofDPSContextRec variables.

4.2 System-Specific Context Creation

The system-specific interface contains, at minimum, procedures for creating the
DPSContextRec record for the implementation of the Client Library. It also
provides support for extensions to the Client Library interface such as additional
error codes. The system-specific interface is described in a system-specific
header file. In the X Window System, this file is<DPS/dpsXclient.h>.

Every context is associated with a system-specific object such as a window or a
file. The context is created by calling a procedure in the system-specific interface.
Once the context has been created, however, a set of standard Client Library
operations can be applied to it. These operations, including context destruction,
are defined in the standard header filedpsclient.h. (See section 9, “dpsclient.h
Header File,” for more information.)

4.3 Example of Context Creation

Context creation facilities are system-specific because they often need data
objects that represent system-specific entities, such as windows and files.
However, most context creation facilities share a number of common attributes.
In this section, procedure parameters common to most systems are described in
detail, while system-specific parameters are listed without further discussion.

CL-8 Client Library Reference Manual 15 April 1993

The procedures described in this section were designed for the X Window
System. They provide an example of an actual system implementation while at
the same time demonstrating basic functions that all window systems must
provide for context creation.

The creation of aDPSContextRec data structure is usually part of application
initialization. Contexts persist until they are destroyed. The following example is
a context creation for the X Window System.

Example 2 Context creation for the X Window System

C language code:

DPSContext XDPSCreateSimpleContext(dpy, drawable,

gc, x, y, textProc, errorProc, space)

Display *dpy;

Drawable drawable;

GC gc;

int x, y;

DPSTextProc textProc;

DPSErrorProc errorProc;

DPSSpace space;

typedef void (*DPSTextProc)(/* DPSContext ctxt,

char *buf,

long unsigned int count */);

typedef void (*DPSErrorProc)(/* DPSContext ctxt,

DPSErrorCode errorCode,

long unsigned int arg1, arg2 */);

XDPSCreateSimpleContext is a system-specific procedure that creates an
execution context in the PostScript interpreter. The argumentsdpy, gc, x, andy
have specific uses in the X Window System; detailed discussion of these uses is
beyond the scope of this manual. Thedrawable argument associates the
DPSContextRec data structure with a system-specific imaging object. In this
case, it is an X drawable object, which can be a window or a pixmap.
DPSTextProc andDPSErrorProc are standard procedure types declared in
dpsclient.h; their type definitions are included here for ease of reading.

Thespace argument identifies the private PostScript VM in which the new
context executes. Ifspace is NULL, a new space is created for the context;
otherwise, it shares the specified space with contexts previously created in the
space. An application that creates one space and one context can passNULL for
thespace argument.

The textProc anderrorProc arguments point to facilities that can be customized
for handling text and errors sent by the interpreter. PassingNULL for these
arguments is allowed but means that text and errors are ignored. For simple
applications, you specify the system-specific default text procedure

Client Library Reference Manual 4 Basic Client Library Facilities CL-9

C
L

(DPSDefauItTextBackstop in the X Window System implementation) and
DPSDefaultErrorProc . You can useDPSGetCurrentT extBackstop to get the
current default text procedure.

XDPSCreateSimpleContext creates a context for which the PostScript
interpreter is the destination of code and data sent to the context. It is sometimes
useful to send the code and data elsewhere, such as to a file, terminal (UNIX
stdout), or printer. The following example shows how to do this.

DPSContext DPSCreateTextContext(textProc, errorProc)

DPSTextProc textProc;

DPSErrorProc errorProc;

DPSCreateTextContext creates a context whose input is converted to ASCII
encoding (text that is easily transmitted and easily read by humans). The
ASCII-encoded text is passed to thetextProc procedure rather than to the
PostScript interpreter. Since the application provides the implementation of
textProc, it determines where the ASCII text goes from there. The text can be
sent to a file, a terminal, or a printer’s communication port.

TheerrorProc procedure associated with a context handles errors that arise when
a wrap or Client Library procedure is called with that context. ThetextProc
argument callserrorProc to handle an error only when an appropriate error code
has been defined.

4.4 The Current Context

The current context is the one that was specified by the last call to
DPSSetContext . If the application has only one context, callDPSSetContext
at the time the application is initialized. If the application manages more than one
context, it must set the current context when necessary.

Many Client Library procedures do not require the application to specify a
context; they assume the current context. This is true of all single-operator
procedures defined inpsops.h as well as any wrapped procedures that were
defined to use the current context implicitly.

An application can find out which is the current context by calling
DPSGetCurrentContext .

4.5 Sending Code and Data to a Context

Once the context has been created, the application can send PostScript language
code to it by calling procedures such as:

• Wraps (custom wrapped procedures) developed for the application

• Single-operator procedures defined indpsops.h andpsops.h

CL-10 Client Library Reference Manual 15 April 1993

• TheDPSPrintf , DPSWritePostScript , andDPSWriteData Client Library
procedures provided for writing to a context

A wrapped procedure is a PostScript language program encoded as a binary
object sequence. These are described in section 3.12.2, “Binary Object
Sequences,” of thePostScript Language Reference Manual, Second Edition.
Creating wrapped procedures is discussed in thepswrap Reference Manual.

Once the PostScript language program has been embedded in the body of a wrap
by using thepswrap translator, it can be called like any other C procedure. Wraps
are the most efficientway to specify any PostScript language program as a
C-callable procedure.

The following list contains six examples of sending code and data to a context.

• Consider a wrap that draws a small colored circle around the point where the
mouse was clicked, given an RGB color and thex, y coordinate returned by a
mouse-click event. The exact PostScript language implementation is left for
you as an exercise, but the C declaration of the wrap might look like this:

extern void PSWDrawSmallCircle(/*

DPSContext ctxt; int x, y; float r, g, b*/);

An application might call this procedure as part of the code that handles
mouse clicks. Suppose the structevent contains thex, y coordinate. To draw a
bright green circle around the spot, call the wrapped procedure with the
following arguments:

PSWDrawSmallCircle(ctxt, event.x, event.y, 0.0, 1.0, 0.0);

• If a wrap returns values, the procedure that calls it must pass pointers to the
variables into which the values will be stored. Consider a wrap that, given a
font name, tells whether the font is in theSharedFontDirectory . Define the
wrap as follows:

defineps PSWFontLoaded(

DPSContext ctxt; char *fontName boolean *found)

The corresponding C declaration is

extern void PSWFontLoaded(/* DPSContext ctxt;

char *fontName; int *found*/);

Note that Booleans are of the C typeint. Call the wrapped procedure by
providing a pointer to a variable of typeint as follows:

int fontFound;

PSWFontLoaded(ctxt, "Helvetica", &fontFound);

Wraps are the most efficient way to specify any PostScript language program
as a C-callable procedure.

Client Library Reference Manual 4 Basic Client Library Facilities CL-11

C
L

• Occasionally, a small PostScript language program (one operator) is needed.
In this case, a single-operator procedure is appropriate. For example, to get the
current gray level, provide a pointer to afloat, and call the single-operator
procedure equivalent of the PostScriptcurrentgray operator, use the
following lines:

float gray;

DPScurrentgray(ctxt, &gray);

See section 10.4, “dpsops.h Procedure Declarations,” for a complete list of
single-operator procedure declarations.

• DPSPrintf is one of the Client Library facilities provided for writing
PostScript language code directly to a context.DPSPrintf is similar to the
standard C library routineprintf . It formats arguments into ASCII text and
writes this text to the context. SmallPostScript language programs or text data
can be sent this way. The following example sends formatted text to the show
operator to represent an author’s byline:

struct {

int x, y; /* location on page for byline */

char *titleString; /* title of document */

char *authorsName;/* name of author */

} byline;

DPSPrintf(ctxt, "%d %d moveto (%s by %s) show\n",

byline.x,

byline.y,

byline.titleString,

byline.authorsName);

Thex, y coordinate is formatted in place of the two%d field specifiers, the title
replaces the first%s, followed by the wordby. The author’s name replaces the
second %s.

Caution: When you useDPSPrintf , leave white space (newline with \n, or just a space)
at the end of the format string if the string ends with an operator. PostScript
language code written to a context appears as a continuous stream. Thus,
consecutive calls toDPSPrintf appear as if all the text were sent at once. For
example, suppose the following calls were made:

DPSPrintf(ctxt, "gsave");

DPSPrintf(ctxt, "stroke");

DPSPrintf(ctxt, "grestore");

The context receives a single string “gsavestrokegrestore ”, with all
the operators run together. Of course, this might be useful for constructing a
long string that isn’t part of a program, but when sending operators to be
executed, add white space to the end of each format string. For example:

DPSPrintf(ctxt, "gsave\n");

CL-12 Client Library Reference Manual 15 April 1993

• TheDPSWritePostScript procedure is provided for writing PostScript
language code of any encoding to a context. IfDPSChangeEncoding is
provided by the system-specific interface, useDPSWritePostScript to
convert a binary-encoded PostScript language program into another binary
form (for instance, binary object sequences to binary-encoded tokens) or into
ASCII text. Send code for immediate execution by the interpreter as binary
object sequences. Send code that’s intended to be read by a human as ASCII
text.

Note: Although PostScript language of any encoding can be written to a context,
unexpected results can occur when intermixing code of different encodings.
This is particularly important when ASCII encoding is mixed with binary
encoding. (See section 3.12, “Binary Encoding Details,” of the PostScript
Language Reference Manual, Second Edition for a discussion of encodings.)

The following code, which looks correct, might fail with a syntax error in the
interpreter, depending on the contents of the buffer:

while (/* more buffers to send */) {

count = GetBuffer(file, buffer);

DPSWritePostScript(ctxt, buffer, count);

MyWrap(ctxt);

}

GetBuffer reads a PostScript language program in the ASCII encoding from a
file. The call toMyWrap generates a binary object sequence. If the program in
the buffer passed toDPSWritePostScript is complete, with no partial tokens,
MyWrap works correctly. If, however, the end of the buffer contains a partial
token, “mov”, and the next buffer starts with “eto ”, the binary object
sequence representingMyWrap is inserted immediately after the partial
token, resulting in a syntax error.

This applies to all procedures that send code or data to a context, including the
Client Library proceduresDPSPrintf , DPSWritePostScript , and
DPSWriteData .

• To send any type of data to a context (such as hexadecimal image data) or to
avoid the automatic conversion behavior built intoDPSWritePostScript , use
DPSWriteData .

The following example reads hexadecimal image data line by line from a file
and sends the data to a context:

Example 3 Reading hexadecimal image data from a file and sending it to a context

while (!feof(fp)) {

fgets(buf, BUFSIZE, fp);

DPSWriteData(ctxt, buf, strlen(buf));

}

Client Library Reference Manual 4 Basic Client Library Facilities CL-13

C
L

4.6 Spaces

A context is created in a space. The space is either shared with a previously
created context or is created when a new context is created. Multiple contexts in
the same space share all data. Coordination is required to ensure that they don’t
interfere with each other. Contexts in different spaces can operate more or less
independently and still share data by using shared VM. See the discussion of VM
and spaces in PostScript Language Reference Manual, Second Edition.

Destroying a space automatically destroys all of the contexts within it.
DPSDestroySpace callsDPSDestroyContext for each context in the space.

The parameters that define a space are contained in a record of type
DPSSpaceRec.

4.7 Interrupts

An application might need to interrupt a PostScript language program running in
the PostScript interpreter. CallDPSInterruptContext for this. (Although this
procedure returns immediately, an indeterminate amount of time can pass before
execution is actually interrupted.)

An interrupt request causes the context to execute aninterrupt error. Since the
implementation of this error can be changed by the application, the results of
requesting an interrupt cannot be defined here. The default behavior is that the
stop operator executes.

4.8 Destroying Contexts

An application should destroy all the contexts it creates when they are no longer
needed by callingDPSDestroyContext or DPSDestroySpace . Destroying a
context does not destroy the space it occupies, but destroying a space destroys all
of its contexts.

Caution: A common error in Display PostScript programming is neglecting to destroy a
context’s space when you destroy a context. This leads to memory leaks. Unless
you plan to create a new context that uses the destroyed context’s space, you
should destroy a context by callingDPSDestroySpace on its space.

The PostScript interpreter detects when an application terminates abnormally and
destroys any spaces and contexts that the application has created.

CL-14 Client Library Reference Manual 15 April 1993

5 Handling Output from the Context

Output is information returned from the PostScript interpreter to the application.
In the Display PostScript system, three kinds of output are possible:

• Output parameters (results) from wrapped procedures

• ASCII text written by the context (for example, by theprint operator)

• Errors

Each kind of output is handled by a separate mechanism in the Client Library.
Handling text and errors is discussed in the remainder of this section.

Note: You may not get text and error output when you expect it.

For example, a wrap that generates text to be sent to the application (for
instance, with theprint operator) might return before the application receives
the text. Unless the application and the interpreter are synchronized, the text
might not appear until some other Client Library procedure or wrap is called.
This is due to delays in the communications channel or in scheduling execution of
the context in the PostScript interpreter.

These delays are an important consideration for handling errors, since
notification of the error can be received by the application long after the code that
caused the error was sent.

5.1 Callback Procedures

You must specify callback procedures to handle text and errors. A callback
procedure is code provided by an application and called by a system function.

A text handler is a callback procedure that handles text output from the context. It
is specified in thetextProc field of theDPSContextRec. A system-specific
default text handler might be provided.

An error handler is a callback procedure that handles errors arising when the
context is passed as a parameter to any Client Library procedure or wrap. It is
specified in theerrorProc field of theDPSContextRec. DPSDefaultErrorProc
is the default error handler provided with every Client Library implementation.

Text and error handlers are associated with a context when the context is created,
but theDPSSetTextProc andDPSSetErrorProc procedures give the
application the flexibility to change these handlers at any time.

Using a callback procedure reverses the normal flow of control, which is as
follows:

Client Library Reference Manual 5 Handling Output from the Context CL-15

C
L

1. An application that is active calls the system to provide services, for example,
to get memory or open a file.

2. The application gives up control until the system has provided the service.

3. The system procedure returns control to the application, passing the result of
the service that was requested.

In the case of callback procedures, the application wants a custom service
provided at a time when it is not in control. It does this as follows:

1. The application notifies the system, often at initialization, of the address of the
callback procedure to be invoked when the systemrecognizes a condition (for
example, an error condition).

2. When the error is raised, the system gets control.

3. The system passes control to the error handler specified by the application,
thus “calling back” the application.

4. The error handler does processing on behalf of the application.

5. When the error handler completes, it returns to the system.

In the Display PostScript system, the text and error handlers in the Client Library
interface are designed to be used this way.

Note: To protect the application against unintended recursion, Client Library
procedures and wraps normally should not be called from within a callback
procedure. However, there may be system-specific circumstances in which such
calls are safe. See the system-specific documentation for more information.

5.2 Text Handlers

A context generates text output with operators such asprint , writestring , and==.
The application handles text output with a text handler, which is specified in the
textProc field of theDPSContextRec. The text handler is passed a buffer of text
and a count of the number of characters in the buffer; what is done with this
buffer is up to the application. The text handler might be called several times to
handle large amounts of text.

Note that the Client Library just gets buffers; it doesn’t provide any logical
structure for the text and it doesn’t indicate (or know) where the text ends.

The text handler can be called as a side effect of calling a wrap, a single-operator
procedure, or a Client Library procedure that takes a context. You can’t predict
when the text handler for a context will be called unless the application is
synchronized with the interpreter.

CL-16 Client Library Reference Manual 15 April 1993

Caution: Never generate text output that contains non-ASCII characters (characters with
the high bit set). Doing so can cause unpredictable and often fatal errors in the
Client Library.

5.3 Text Handler Example

Consider an application that normally displays a log window to which it appends
plain text or error messages received from the interpreter. The handlers were
associated with the context when it was created.

Occasionally, the application calls a wrapped procedure that generates a block of
text intended for a file. Before calling the text-generating procedure, the
application must install a temporary text handler for its output. The temporary
text handler stores the text it receives in a file instead of in the log window. When
the text-generating procedure completes, the application restores the original text
handler.

The following example shows such an application, written for the X Window
System.

Example 4 Text handler

Wrap definition:

/* wrapped procedure that generates text */

defineps WrapThatGeneratesText(DPSContext ctxt

| boolean *done)

% send a text representation of the contents of mydict

mydict {== ==} forall

% returning a value flushes output as a side effect

true done

endps

/* normal text proc appends to a log window */

void LogTextProc(ctxt, buf, count)

 DPSContext ctxt;

 char *buf;

long unsigned int count;

{

/* ... code that appends text to a log window... */

}

/* special text proc stores text to a file */

void StoreTextProc(ctxt, buf, count)

DPSContext ctxt:

char *buf;

long unsigned int count;

Client Library Reference Manual 5 Handling Output from the Context CL-17

C
L

{

/* ... code that appends text to a file ... */

}

/* application initialization */

ctxt = XDPSCreateSimpleContext(dpy, drawable, gc, x, y,

LogTextProc, DPSDefaultErrorProc, NULL);

(void) XDPSSetEventDelivery(dpy, dps_event_pass_through);

/* main loop for application */

while (1) {

/* get an input event */

XNextEvent(dpy, &event);

if (DPSDispatchEvent(&event)) continue;

/* any text that comes from processing

EVENT_A or EVENT_B is logged */

switch (event.type) {

/* react to event */

case EVENT_A: ...

case EVENT_B: ...

/* but EVENT_C means store the text in a file */

case EVENT_C: {

int done;

DPSTextProc tmp = ctxt->textProc;

/* make sure interpreter is ready */

DPSWaitContext(ctxt);

/* temporarily install the other text proc */

DPSSetTextProc(ctxt, StoreTextProc);

/* call the wrapped procedure */

WrapThatGeneratesText(ctxt, &done);

/* since wrap returned a value, we know the

interpreter is ready when we get here;

restore original textProc */

DPSSetTextProc(ctxt, tmp);

/* close file by calling textProc with count = 0 */

StoreTextProc(ctxt, NULL, 0);

break;

}

}

}

5.4 Error Handlers

TheerrorProc field in theDPSContextRec contains the address of a callback
procedure for handling errors. The error callback procedure iscalled when there
is a PostScript language error or when an error internal to the Client Library, such
as use of an invalid context identifier, is encountered.

CL-18 Client Library Reference Manual 15 April 1993

When the interpreter detects a PostScript language error, it invokes the standard
handleerror procedure to report the error, then forces the context to terminate.
The error callback procedure specified in theDPSContextRec is called with the
dps_err_ps error code.

After a PostScript language error, the context becomes invalid; further use causes
another error. See Appendix A for a sample error handler.

5.5 Error Recovery Requirements

For many applications, error recovery might not be an issue because an
unanticipated PostScript language error or Client Library error represents a bug
in the program that will be fixed during development. However,since
applications sometimes go into production with undiscovered bugs, provide an
error handler that allows the application to exit gracefully.

There are a small number of applications that require error recovery more
sophisticated than simply exiting. If an application falls into one of the following
categories, it is likely that some form of error recovery will be needed:

• Applications that read and execute PostScript language programs generated
by other sources (for example, a previewer application for PostScript
language documents generated by a word-processing program). Since the
externally provided PostScript language program might have errors, the
application must provide error recovery.

• Applications that allow you to enter PostScript language programs. This
category is a subset of the previous category.

• Applications that generate PostScript language programs dynamically in
response to user requests (for example, a graphics art program that generates
an arbitrarily long path description of a graphical object).Since there are
system-specific resource limitations on the interpreter, such as memory and
disk space, the application should be able toback away from an error caused
by exhausting a resource and attempt to acquire new or reclaim used resources.

Error recovery is complicated because both the Client Library and the context
can be left in unknown states. For example, the operand stack might have unused
objects on it.

In general, if an application needs to intercept and recover from PostScript
language errors, keep it simple. For some applications, the best strategy when an
error occurs is either to destroy the space and construct a new one with a new
context or to restart the application.

A given implementation of the Client Library might provide more sophisticated
error recovery facilities. Consult your system-specific documentation. Your
system might provide the general-purpose exception handling facilities described
in Appendix B, which can be used in conjunction withDPSDefaultErrorProc .

Client Library Reference Manual 5 Handling Output from the Context CL-19

C
L

5.6 Backstop Handlers

Backstop handlers handle output when there is no other appropriate handler. The
Client Library automatically installs backstop handlers.

Call DPSGetCurrentT extBackstop to get a pointer to the current backstop text
handler. CallDPSSetTextBackstop to install a new backstop text handler. The
text backstop can be used as a default text handler implementation. The definition
of what the default text handler does is system specific. For instance, for UNIX
systems, it writes the text tostdout.

Call DPSGetCurrentErrorBackstop to get a pointer to the current backstop
error handler. CallDPSSetErrorBackstop to install a new backstop error
handler. The backstop error handler processes errors internal to the Client
Library, such as a lost server connection. These errors have no specific
DPSContext handle associated with them and therefore have no error handler.

CL-20 Client Library Reference Manual 15 April 1993

6 Additional Client Library Facilities

The Client Library includes a number of utilities and support functions for
applications. This section describes:

• Sending the same code and data to a group of contexts by chaining them

• Encoding and translating PostScript language code

• Buffering and flushing the buffer

• Synchronizing an application with a context

• Communicating with a forked context

6.1 Chained Contexts

Occasionally it is useful to send the same PostScript language program to several
contexts. This is accomplished by chaining the contexts together and sending
input to one context in the chain; for example, by calling a wrap with that
context.

Two Client Library procedures are provided for managing context chaining:

• DPSChainContext links a context to a chain.

• DPSUnchainContext removes a child context from its parent’s chain.

One context in the chain is specified as the parent context, the other as the child
context. The child context is added to the parent’s chain. Subsequently, any input
sent to the parent is sent to its child, and the child of the child, and so on. Input
sent to a child is not passed to its parent.

A context can appear on only one chain. If the context is already a child on a
chain,DPSChainContext returns a nonzero error code. However, you can chain
a child to a context that already has a child.

Note: A parent context always passes its input to its child context. However, for a chain
of more than two contexts, the order in which the contexts on the chain receive
the input is not defined. Therefore, an application should not rely on
DPSChainContext to create a chain whose contexts process input in a
particular order.

For chained contexts, output is handled differently from input, and text and errors
are handled differently from results. If a context on a chain generates text or error
output, the output is handled by that context only. Such output is not passed to its
child. When a wrap that returns results is called, all of the contexts on the chain
get the wrap code (the input), but only the context with which the wrap was
called receives the results.

Client Library Reference Manual 6 Additional Client Library Facilities CL-21

C
L

The best way to build a chain is to identify one context as the parent. Call
DPSChainContext to make each additional context the child of that parent. For
example, to chain contextsA, B, C, andD, chooseA as the parent and make the
following calls toDPSChainContext :

DPSChainContext(A,B);

DPSChainContext(A,C);

DPSChainContext(A,D);

Once the chain is built, send input only to the designated parent,A.

The most common use of chained contexts is in debugging. A log of PostScript
operators executed can be kept by a child context whose purpose is to convert
PostScript language programs to ASCII text and write the text to a file. This child
is chained to a parent context that sends normal application requests to the
interpreter. The parent’s calls to wrapped procedures are logged in
human-readable form by the child as a debugging audit trail.

Chained contexts can also be used for duplicate displays. An application might
want several windows or several different display screens to show the same
graphics without having to explicitly call the wrapped procedure in a loop for all
of the contexts.

6.2 Encoding and Translation

PostScript language code can be sent to a context in three ways:

• As a binary object sequence typically used for immediate execution on behalf
of a context.

• As binary-encoded tokens typically used for deferred execution from a file.

• As ASCII text typically used for debugging, display, or deferred execution
from a file.

See section 3.12, “Binary Encoding Details,” of thePostScript Language
Reference Manual, Second Edition for the binary encoding formats’ complete
specifications.

Since the application and the PostScript interpreter can be on different machines,
the Client Library automatically ensures that the binary representation of numeric
values, including byte order and floating-point format, are correctly interpreted.

6.2.1 Encoding PostScript Language Code

On a system-specific basis, the Client Library supports a variety of conversions
to and from the encodings and formats defined for the PostScript language. These
are:

CL-22 Client Library Reference Manual 15 April 1993

• Binary object sequence to binary object sequence, for expanding user name
indexes back to their printable names.

• Binary object sequence to ASCII encoding, for backward compatibility with
printers, interchange, and debugging.

• Binary object sequence to binary-encoded tokens, for long-term storage.

• Binary-encoded tokens to ASCII, for backward compatibility and interchange.

DPSProgramEncoding defines the three encodings available to PostScript
language programs.DPSNameEncoding defines the two encodings for user
names in PostScript language programs.

6.2.2 Translation

Translation is the conversion of program encoding or name encoding from one
form to another. Any code sent to the context is converted according to the setting
of the encoding fields. For a context created with the system-specific routine
DPSCreateTextContext , code is automatically converted to ASCII encoding.

An application sometimes exchanges binary object sequences with another
application. Since binary object sequences have user nameindexes by default, the
sending application must provide name-mapping information to the receiving
application which can be lengthy.

Instead, some implementations allow the application to translate name indices
back into user names by changing thenameEncoding field todps_strings. In
many implementations,DPSChangeEncoding performs this function.

6.3 Buffering

For optimal performance, programs and data sent to a context might be buffered
by the ClientLibrary. For the most part, you don’t need to be concerned with this.
Flushing of the buffer happens automatically as required, such as just before
waiting for input events.

However, in certain situations, the application can explicitly flush a buffer.
DPSFlushContext allows the application to force any buffered code or data to
be sent to the context. UsingDPSFlushContext is usually not necessary.
Flushing does not guarantee that code is executed by the context, only that any
buffered code is sent to the context.

Unnecessary flushing is inefficient. It is unusual for the application to flush the
buffer explicitly. Cases where the buffer might need to be flushed include the
following:

• When there is nothing to send to the interpreter for a long time (for example,
“going to sleep” or doing a long computation).

Client Library Reference Manual 6 Additional Client Library Facilities CL-23

C
L

• When there is nothing expected from the interpreter for a long time. (Note that
getting input automatically flushes the output buffers.)

When the client and the server are separate processes and the buffered code
doesn’t need to be executed immediately, the application can flush the buffers
with flush rather than synchronizing with the context.

6.4 Synchronizing Application and Context

The PostScript interpreter can run as a separate operating system process (or
task) from the application; it can even run on a separate machine. When the
processes are separate, you must take into account the communication between
the application and the PostScript interpreter. This is important when time-critical
actions must be performed based on the current appearance of the display. Also,
errors arising from the execution of a wrapped procedure can be reported long
after the procedure returns.

The application and the context are synchronized when all code sent to the
context has been executed, and it is waiting to execute more code. When the two
are not synchronized, the status of code previously sent to the context is unknown
to the application. Synchronization can be effected in two ways: as a side effect
of calling wraps that return values, or explicitly, by calling theDPSWaitContext
procedure.

A wrapped procedure that has no result values returns as soon as the wrap body is
sent to the context. The data buffer is not necessarily flushed in this case.
Sometimes, however, the application’s next actiondepends on the completed
execution of the wrap body by the PostScript interpreter. The following describes
the kind of problem that can occur when the assumption is made that a wrap’s
code has been executed by the time it returns.

For example, an application calls a wrapped procedure to draw a large, complex
picture into an offscreen buffer (such as an X11 pixmap). The wrapped procedure
has no return value, so it returns immediately, although the context might not
have finished executing the code. The application then calls procedures to copy
the screen buffer to a window for display. If the context has not finished drawing
the picture in the buffer, only part of the image appears on the screen. This is not
what the application programmer intended.

Wrapped procedures that return results flush any code waiting to be sent to the
context and then wait until all results have been received. They automatically
synchronize the context with the application. The wrapped procedure won’t
return until the interpreter indicates that all results have been sent. In this case,
the application knows that the context is ready to execute more code as soon as
the wrapped procedurereturns, but the wrapped procedure might return
prematurely if an error occurs, depending on how the error handler works.

CL-24 Client Library Reference Manual 15 April 1993

The preceding discussion describes the side effect of calling a wrap that returns a
value, but it is not always convenient or correct to use this method of
implementation. Forcing the application to wait for a return result for every wrap
is inefficient and might degrade performance.

If an application has a few critical points where synchronization must occur, and
a wrap that returns results is not needed,DPSWaitContext can be used to
synchronize the application with the context. It flushes any buffered code, and
then waits until the context finishes executing all code that has been sent to it so
far. This forces the context to finish before the application continues.

Like wraps that return results,useDPSWaitContext only when necessary.
Performance can be degraded by excessive synchronization.

6.5 Forked Contexts

When thefork operator is executed in the PostScript interpreter, a new execution
context is created. In order to communicate with a forked context, the application
must create aDPSContextRec for it. For example,
DPSContextFromContextID is an X Window System procedure that creates a
DPSContextRec for a forked context.

DPSContext DPSContextFromContextID(ctxt, cid, textProc,

errorProc)

DPSContext ctxt;

long int cid,

DPSTextProc textProc,

DPSErrorProc errorProc;

ctxt is the context that executed thefork operator.

cid is the integer value of the new context’s identifier.NULL is returned ifcid is
invalid.

If textProc or errorProc areNULL, DPSContextFromContextID copies the
corresponding procedure pointer fromctxt to the new DPSContext; otherwise
the new context gets the specifiedtextProc anderrorProc.

All other fields of the new context are initialized with values fromctxt, including
thespace field.

Client Library Reference Manual 7 Programming Tips CL-25

C
L

7 Programming Tips

This section contains tips for avoiding common mistakes made when using the
Client Library interface.

• Don’t guess the arguments to a single-operator procedure call; lookthem up in
the listing in section 10, “Single-Operator Procedures.”

• Variables passed to wrapped procedures and single-operator procedures must
be of the correct C type. A common mistake is to pass a pointer to ashort int
(only 16 bits) to a procedure that returns a boolean. A boolean is defined as an
int, which can be 32 bits on some systems.

• Make sure that PostScript language code is properly separated by white space
when usingDPSPrintf . Variables passed toDPSPrintf must be of the right
type. Passing typefloat to a format string of “%d” will yield unpredictable
results.

• There are two ways of synchronizing the application with the context: Either
call DPSWaitContext , which causes the application to wait until the
interpreter has executed all the code sent to the execution context, or call a
wrap that returns a result, which causes synchronization as a side effect. If
synchronization is not required, use a wrap that returns results only when
results are needed. Unnecessary synchronization by either method degrades
performance.

• Use ofDPSFlushContext is usually not necessary.

• Don’t read from the file returned by the operatorcurrentfile from within a
wrap. In general, don’t read directly from the context’s standard input stream
%stdin from within a wrap. Since a binaryobject sequence is a single token,
the behavior of the code is different from what it would be in another encoding,
such as ASCII. This will lead to unpredictable results. See Appendix B on
page CL-73 and the PostScript Language Reference Manual, Second Edition.

• If the context is an execution context for a display, do not write PostScript
language programs (particularly in wraps) that depend on reading the
end-of-file (EOF) indicator. Support for EOF on the communications channel
is system specific and should not be relied on. However, PostScript language
programs that will be written to a file or spooled to a printer can make use of
EOF indicators.

• Be careful when sending intermixed encoding types to a context. In particular,
it’s best to avoid mixing ASCII encoding with binary encoding. See the
following tip onDPSWaitContext .

• Before callingDPSWaitContext , make sure that code that has already been
sent to the context is syntactically complete, such as a wrap or a correctly
terminated PostScript operator or composite object.

CL-26 Client Library Reference Manual 15 April 1993

• Use of thefork operator requires understanding of a given system’s support
for handling errors from the forked context. A common error while
developing multiple context applications is to fail to handle errors arising
from forked contexts.

• To avoid unintended recursions, don’t call Client Library procedures or wraps
from within a callback procedure.

• To avoid confusion about which context on a chain will handle output, don’t
send input to a context that’s been made the child of another context; send
input only to the parent. (This doesn’t apply to text contexts, since they never
get input.)

• Program wraps carefully. Copying the entire prolog from a PostScript printer
driver into a wrap without change probably won’t result in efficient code.

• Avoid doing all your programming in the PostScript language. Because the
PostScript language is interpreted, not compiled, the application can generally
do arithmetic computation and data manipulation (such as sorting) more
efficiently in C. Reserve the PostScript language for what it does best:
displaying text and graphics.

• To avoid memory leaks, destroy a context’s space instead of destroying the
context itself (see section 4.8 on page 13 for details).

7.1 Using the Imaging Model

A thorough understanding of the imaging model is essential to writing efficient
Display PostScript system applications.

The imaging model helps make your application device independent and
resolution independent. Device independence ensures that your application will
work and look as you intended on any display or print media.

Resolution independence lets you use the power of the PostScript language to
scale, rotate, and transform your graphical display without loss of quality. Use of
the imaging model automatically gives you the best possible rendering for any
device.

Design your application with the imaging model in mind. Consider issues like
converting coordinate systems, representing paths and graphics states with data
structures, rendering colors and patterns, setting text, and accessing fonts (to
name just a few).

Specific tips are:

• Coordinates sent to the PostScript interpreter should be in the user coordinate
system (user space). It might be more convenient to expresscoordinates in the
window coordinate system, but this makes your code resolution-dependent.

Client Library Reference Manual 7 Programming Tips CL-27

C
L

When you need to convert window-system coordinates into user space, do the
conversion in your program in C code rather than letting the interpreter do it.
For example, if you need to draw something at the point where the user
clicked the mouse, convert the mouse coordinates into user space in your
application rather than sending them to the interpreter unconverted.

• Think in terms of color. Avoid programming to the lowest common
denominator (low-resolution monochrome). The imaging model always gives
the best rendering possible for a device, so use colors even if your application
might be run on monochrome or gray-scale devices. Avoid usingsetgray
unless you want a black, white, or gray level. Usesetrgbcolor for all other
cases. The imaging model will use a gray level or halftone pattern if the
device does not support color, so objects of different colors will be
distinguishable from one another.

• Don’t usesetlinewidth with a width of zero to get thin lines. On
high-resolution devices the lines are practically invisible. To get lines
narrower than one point, use fractions such as 0.3 or 0.25.

CL-28 Client Library Reference Manual 15 April 1993

8 Example Application Program

This section provides an example of how to use the Display PostScript system
through the Client Library. The example

• Establishes communication with an X11 server

• Creates a window and a context

• Draws an ochre rectangle in the window

• Waits for a mouse click

• Terminates when the button is pressed

To use the PostScript imaging model, an application must describe itsgraphical
operations in the PostScript language. Therefore, an application using the Display
PostScript system is a combination of C code and PostScript language code.

Thepswrap program generates a C code file and a C header file that defines the
interface to the procedures in the code file. The applicationsource code and the
pswrap output file are compiled and linked together with the program libraries of
the Client Library to form the executable application program. Figure 2
illustrates the complete process.

Client Library Reference Manual 8 Example Application Program CL-29

C
L

Figure 2 Creating an application

8.1 Example C Code

The code in the following example is used in conjunction with the wrap in the
next section.

Example 5 Simple X Window System application

C language code:

/* example.c - simple X Window System application.

Uses the Display PostScript extension to draw

an ochre box and uses X primitives to

wait for a mouse click before terminating. */

#include <stdio.h> /*Standard C library I/O

routines */

#include <X11/Intrinsic.h>/* X Toolkit definitions */

#include <DPS/psops.h> /*Interface to single operator

procedures */

#include <DPS/dpsXclient.h>/* DPS/X Client Library */

#include “examplewraps.h”/*Generated from

examplewraps.psw */

examplewraps.psw

examplewraps.h examplewraps.c example.c

DPS Client Library

pswrap
translator

C compiler

Linker

Example
application
program

CL-30 Client Library Reference Manual 15 April 1993

/* Window geometry definitions */

#define XWINDOW_X_ORIGIN100

#define XWINDOW_Y_ORIGIN100

#define XWINDOW_WIDTH 500

#define XWINDOW_HEIGHT 500

XtAppContext appContext;

void main(argc, argv)

int argc;

char **argv;

{

Display *dpy; /*X display structure */

int screen; /*screen on display */

DPSContext ctxt; /*DPS drawing context */

DPSContext txtCtxt; /*DPS text context for

debugging */

Window xWindow; /*window where drawing

occurs */

int blackPixel, whitePixel;

int debug = False;

GC gc;

XSetWindowAttributes attributes;

float x, y, width, height;

/*Connect to the window server by opening the display.

Most of command line is parsed by XtOpenDisplay,

leaving any options not recognized by the X toolkit:

look for local -debug switch */

XtToolkitInitialize();

appContext = XtCreateApplicationContext();

dpy = XtOpenDisplay(appContext, (String) NULL,

“example”, “example”,

(XrmOptionDescRec *) NULL, 0, &argc, argv);

screen = DefaultScreen(dpy);

if (argc == 2)

if (strcmp(argv[1], “-debug”) == 0) debug = TRUE;

else {

printf(“Usage: example [-display xx:0] [-sync]

[-debug]\n”);

exit (1);

}

/*Create a window to draw in; register interest in mouse

button and exposure events */

blackPixel = BlackPixel(dpy, screen);

whitePixel = WhitePixel(dpy, screen);

attributes.background_pixel = whitePixel;

attributes.border_pixel = blackPixel;

Client Library Reference Manual 8 Example Application Program CL-31

C
L

attributes.bit_gravity = SouthWestGravity;

attributes.event_mask = ButtonPressMask | ButtonReleaseMask

| ExposureMask;

xWindow = XCreateWindow(dpy, DefaultRootWindow(dpy),

XWINDOW_X_ORIGIN, XWINDOW_Y_ORIGIN, XWINDOW_WIDTH,

XWINDOW_HEIGHT, 1, CopyFromParent, InputOutput,

CopyFromParent, CWBackPixel | CWBorderPixel

| CWBitGravity | CWEventMask, &attributes);

XMapWindow(dpy, xWindow);

gc = XCreateGC(dpy, RootWindow(dpy, screen), 0, NULL);

/* Create a DPS context to draw in the window just created.

If the user asked for debugging, create a text context

chained to the drawing context */

ctxt = XDPSCreateSimpleContext(dpy, xWindow, gc, 0,

XWINDOW_HEIGHT, DPSDefaultTextBackstop,

PSDefaultErrorProc, NULL);

if (ctxt == NULL) {

fprintf (stderr,

“Error attempting to create DPS context.\n”);

exit(1);

}

DPSSetContext(ctxt);

(void) XDPSSetEventDelivery(dpy, dps_event_pass_through);

if (debug) {

txtCtxt = DPSCreateTextContext(DPSDefaultTextBackstop,

DPSDefaultErrorProc);

DPSChainContext(ctxt, txtCtxt);

}

/*Wait for Expose event */

while (NextEvent() != Expose);

/*Convert the X Window System coordinates at the lower

right corner of the window to get the width and height

in user space */

PSitransform ((f loat) XWINDOW_WIDTH, (f loat) XWINDOW_HEIGHT,

&width, &height);

/*Locate the box in the middle of the window */

x = width/4.0;

y = height/4.0;

PSWDrawBox(0.77, 0.58, 0.02, x, y, width/2.0, height/2.0);

CL-32 Client Library Reference Manual 15 April 1993

/*Wait for a mouse click on any button then terminate */

while (NextEvent() != ButtonPress);

while (NextEvent() != ButtonRelease);

DPSDestroySpace(DPSSpaceFromContext(ctxt));

exit(0);

}

int NextEvent()

{

XEvent event;

/*Wait for X event, dispatching DPS events */

do {

XtAppNextEvent(appContext, &event);

} while (XDPSDispatchEvent(&event));

return(event.type);

}

8.2 Wrap Example

The following wrap provides the PostScript language routine used by the
example application. It appears asexamplewraps.psw in Figure 2.

Example 6 PSWDrawBox wrap for example application

Wrap definition:

defineps PSWDrawBox(float r, g, b, x, y, width, height)

gsave

r g b setrgbcolor

x y width height rectfill

grestore

endps

8.3 Description of the Example Application

The example application demonstrates the use of Client Library functions and
custom wraps in the X11 environment. The application draws a rectangle in the
middle of a window, waits for a mouse click in the window, and terminates.

The program starts by initializing the toolkit and connecting to the display
device. Command-line options can include all options recognized by the X
Intrinsics resource manager plus a local –debug option, which demonstrates the
use of a chained text context for debugging.

Client Library Reference Manual 8 Example Application Program CL-33

C
L

The program creates a window that contains the drawing produced by the
PostScript operators. The window’s attributes are set to indicate interest in mouse
button and exposure events in that window.

The program creates a context withxWindow as itsdrawable. The
system-specific default handlersDPSDefaultTextBackstop and
DPSDefaultErrorProc are specified in theXDPSCreateSimpleContext call.
These handlers are adequate for this application.

The program callsXDPSSetEventDelivery to specify that it will dispatch
Display PostScript events itself.

If the –debug option is selected, the program creates a context that converts
binary-encoded PostScript language programs into readable text. The text is
passed toPrintProc . This context is then chained to the drawing context. The
result is that any code sent to the drawing context will be also sent to the text
context and displayed onstdout. This is a common technique for debugging
wrapped procedures.

The program waits for anExpose event to arrive. This event indicates that the
window has appeared on the screen and can be safely drawn to.

Once the application is completely initialized, PostScript language code can be
executed to draw a rectangle into the window. This is done by using both a
single-operator procedure and a customized wrapped procedure.

The single-operator procedurePSitransform determines the bounds of the
window in terms of PostScript user space; this allows the program to scale the
size of the rectangle appropriately.

The wrap procedurePSWDrawBox takes red, green, and blue levels to specify
the color of the rectangle. It also takesx andy coordinates for the bottom left
corner of the rectangle, and it takes the rectangle’s width and height. Simple
arithmetic computation is most efficiently done in C code by the application,
rather than in PostScript language code by the interpreter.

PSWDrawBox is called to draw a colored square. If the display supports color,
you’ll see a square painted in ochre (a dark shade of orange). The values 0.77 for
red, 0.58 for green, and 0.02 for blue approximate the color ochre. If the display
supports only gray scale or monochrome, you’ll see a square painted in some
shade of gray.

The program now waits for events. Since the only events registered in this
window are mouse-button events, events such as window movement and resizing
are not directed to the application. When a button-press event is followed by a
button-release event, the program destroys the space used by the drawing
context. This destroys the context and its chained text context as well. The
program then terminates normally.

CL-34 Client Library Reference Manual 15 April 1993

TheNextEvent procedure returns the next X event. It dispatches any Display
PostScript events that it receives by callingXDPSDispatchEvent . This function
returnstrue if the event passed to it is a Display PostScript event andfalse
otherwise.

Client Library Reference Manual 9 dpsclient.h Header File CL-35

C
L

9 dpsclient.h Header File

The procedures indpsclient.h constitute the core of the Client Library and are
system independent. The contents of the header file are described in the following
sections.

9.1 Procedure Types

The following procedure types are defined withtypedef statements.

DPSErrorProc typedef void (*DPSErrorProc)(/*

DPSContext ctxt;

DPSErrorCode errorCode;

long unsigned int arg1, arg2;*/);

DPSErrorProc handles errors caused by the context. These can be PostScript
language errors reported by the interpreter or errors that occur when the Client
Library is called with a context.errorCode is one of the predefined codes that
specify the type of error encountered.errorCode determines the interpretation of
PostScript language errorsarg1 andarg2.

The following list shows howarg1 andarg2 are handled for eacherrorCode:

dps_err_ps arg1 is the address of the binary object sequence
sent by handleerror to report the error. The
sequence has one object, which is an array of four
objects.arg2 is the number of bytes in the entire
binary object sequence.

dps_err_nameTooLong Error in wrap argument. The PostScript user name
and its length are passed asarg1 andarg2. A name
of more than 128 characters causes an error.

dps_err_resultTagCheck Error in formulation of wrap. The pointer to the
binary object sequence and its length are passed as
arg1 andarg2. There is one object in the sequence.

dps_err_resultTypeCheck Incompatible result types. A pointer to the binary
object is passed asarg1; arg2 is unused.

dps_err_invalidContext Stale context handle (probably terminated).arg1 is
a context identifier;arg2 is unused.

CL-36 Client Library Reference Manual 15 April 1993

DPSTextProc typedef void (*DPSTextProc)(/*

DPSContext ctxt;

char *buf;

long unsigned int count; */);

DPSTextProc handles text emitted from the interpreter, for example, by the==
operator.buf is a pointer tocount characters.

9.2 dpsclient.h Data Structures

The context recordDPSContextRec is shared by the application and the
PostScript interpreter. Except for thepriv field, this data structure should not be
altered directly. Thedpsclient.h header file provides procedures to alter it.

When calling Client Library procedures, refer to the context record by its handle,
DPSContext.

DPSContext /* handle for context record */

 SeeDPSContextRec.

DPSContextRec typedef struct_t_DPSContextRec {

char *priv;

DPSSpace space;

DPSProgramEncoding programEncoding;

DPSNameEncoding nameEncoding;

DPSProcs procs;

void (*textProc)();

void (*errorProc)();

DPSResults resultTable;

unsigned int resultTableLength;

struct_t_DPSContextRec *chainParent, *chainChild;

} DPSContextRec, *DPSContext;

DPSContextRec defines the data structure pointed to byDPSContext.

Note that this record is used bydpsclient.h procedures but is actually defined in the
dpsfriends.h header file.

priv is used by application code. It is initialized toNULL and is not touched
thereafter by the Client Library implementation.

Note: Although it is possible to read all fields ofDPSContextRec directly, do not
modify them directly except forpriv. Data structures internal to the Client
Library depend on the values in these fields and must be notified when they
change. Call the procedures provided for this purpose, such as
DPSSetTextProc .

Client Library Reference Manual 9 dpsclient.h Header File CL-37

C
L

space identifies the space in which the context executes.

programEncoding andnameEncoding describe the encoding of the PostScript
language that is sent to the interpreter. The values in these fields are established
when the context is created. Whether or not the encoding fields can be changed
after creation is system specific.

procs points to astruct containing procedures that implement the basic context
operations, including writing, flushing, interrupting, and so on.

The Client Library calls thetextProc anderrorProc procedures to handle
interpreter-generated ASCII text and errors.

resultTableLength andresultTable define the number, type, and location of
results expected by a wrap. They are set up by the wrap procedure before any
values are returned.

chainParent andchainChild are used for chaining contexts.chainChild is a
pointer to the context that automatically receives code and data sent to the
context represented by thisDPSContextRec. chainParent is a pointer to the
context that automatically sends code and data to the context represented by this
DPSContextRec.

DPSErrorCode typedef int DPSErrorCode;

DPSErrorCode defines the type of error code used by the Client Library. The
following are the standard error codes:

• dps_err_ps identifies standard PostScript interpreter errors.

• dps_err_nameTooLong flags user names that are too long. 128 characters is
the maximum length for PostScript language names.

• dps_err_resultTagCheck flags erroneous result tags; these are most likely
due to erroneous explicit use ofprintobject .

• dps_err_resultTypeCheck flags incompatible result types.

• dps_err_invalidContext flags an invalidDPSContext argument. An attempt
to send PostScript language code to a context that has terminated is probably
the cause of this error.

9.3 dpsclient.h Procedures

This section contains descriptions of the procedures in the Client Library header
file dpsclient.h, listed alphabetically.

CL-38 Client Library Reference Manual 15 April 1993

DPSChainContext int DPSChainContext(parent, child)

DPSContext parent, child;

DPSChainContext linkschild onto the context chain ofparent. This is the chain
of contexts that automatically receive a copy of any code or data sent toparent. A
context appears on only one such chain.

DPSChainContext returns zero if it successfully chainschild to parent. It fails
if child is on another context’s chain; in that case, it returns–1.

DPSDefaultErrorProc void DPSDefaultErrorProc(ctxt, errorCode, arg1, arg2)

DPSContext ctxt;

DPSErrorCode errorCode;

long unsigned int arg1, arg2;

DPSDefaultErrorProc is a sampleDPSErrorProc for handling errors from the
PostScript interpreter.

The meaning ofarg1 andarg2 depend onerrorCode. SeeDPSErrorProc .

DPSDestroyContext void DPSDestroyContext(ctxt)

DPSContext ctxt;

DPSDestroyContext destroys the context represented byctxt. The context is
first unchained if it is on a chain.

What happens to buffered input and output when a context is destroyed is system
specific.

Destroying a context does not destroy its space; seeDPSDestroySpace .

DPSDestroySpace void DPSDestroySpace(spc)

DPSSpace spc;

DPSDestroySpace destroys the space represented byspc. This is necessary for
application termination and cleanup. It also destroys all contexts withinspc.

DPSFlushContext void DPSFlushContext(ctxt)

DPSContext ctxt;

DPSFlushContext forces any buffered code or data to be sent toctxt. Some
Client Library implementations use buffering to optimize performance.

Client Library Reference Manual 9 dpsclient.h Header File CL-39

C
L

DPSGetCurrentErrorBackstop
DPSErrorProc DPSGetCurrentErrorBackstop();

DPSGetCurrentErrorBackstop returns theerrorProc passed most recently to
DPSSetErrorBackstop , or NULL if none was set.

DPSGetCurrentTextBackstop
DPSTextProc DPSGetCurrentTextBackstop();

DPSGetCurrentErrorBackstop returns thetextProc passed most recently to
DPSSetTextBackstop , or NULL if none was set.

DPSInterruptContext void DPSInterruptContext(ctxt)

DPSContext ctxt;

DPSInterruptContext notifies the interpreter to interrupt the execution of the
context, resulting in the PostScript languageinterrupt error. The procedure
returns immediately after sending the notification.

DPSPrintf void DPSPrintf(ctxt, fmt, [, arg ...]);

DPSContext ctxt;

char *fmt;

DPSPrintf sends stringfmt to ctxt with the optional arguments converted,
formatted, and logically inserted into the string in a manner identical to the
standard C libraryroutineprintf . It is useful for sending formatted data or a short
PostScript language program to a context.

DPSResetContext void DPSResetContext(ctxt)

DPSContext ctxt;

DPSResetContext resets the context after an error occurs. It ensures that any
buffered I/O is discarded and that the context is ready to read and execute more
input.DPSResetContext works in conjunction withresynchandleerror .

DPSSetErrorBackstop void DPSSetErrorBackstop(errorProc)

DPSErrorProc errorProc;

DPSSetErrorBackstop establisheserrorProc as a pointer to the backstop error
handler. This error handler handles errors that are not handled by any other error
handler.NULL will be passed as thectxt argument to the backstop error handler.

CL-40 Client Library Reference Manual 15 April 1993

DPSSetErrorProc void DPSSetErrorProc(ctxt, errorProc)

DPSContext ctxt;

DPSErrorProc errorProc;

DPSSetErrorProc changes the context’s error handler.

DPSSetTextBackstop void DPSSetTextBackstop(textProc)

DPSTextProc textProc;

DPSSetTextBackstop establishes the procedure pointed to bytextProc as the
handler for text output for which there is no other handler. The text handler acts
as a backstop for text output.

DPSSetTextProc void DPSSetTextProc(ctxt, textProc)

DPSContext ctxt;

DPSTextProc textProc;

DPSSetTextProc changes the context’s text handler.

DPSSpaceFromContext DPSSpace DPSSpaceFromContext(ctxt)

DPSContext ctxt;

DPSSpaceFromContext returns the space handle for the specified context. It
returnsNULL if ctxt does not represent a valid execution context.

DPSUnchainContext void DPSUnchainContext(ctxt)

DPSContext ctxt;

DPSUnchainContext removesctxt from the chain that it is on, if any. The
parent and child pointers of the unchained context are set toNULL.

DPSWaitContext void DPSWaitContext(ctxt)

DPSContext ctxt;

DPSWaitContext flushes output buffers belonging toctxt and then waits until
the interpreter is ready for more input toctxt. It is not necessary to call
DPSWaitContext after calling a wrapped procedure that returns a value.

Before callingDPSWaitContext , ensure that the last code sent to the context is
syntactically complete, such as a wrap or a correctly terminated PostScript
operator or composite object.

Client Library Reference Manual 9 dpsclient.h Header File CL-41

C
L

DPSWriteData void DPSWriteData(ctxt, buf, count)

DPSContext ctxt;

char *buf;

unsigned int count;

DPSWriteData sendscount bytes of data frombuf to ctxt. ctxt specifies the
destination context.buf points to a buffer that containscount bytes. The contents
of the buffer will not be converted according to the context’s encoding
parameters.

DPSWritePostScript void DPSWritePostScript(ctxt, buf, count)

DPSContext ctxt;

char *buf;

unsigned int count;

DPSWritePostScript sends PostScript language to a context in any of the three
language encodings.ctxt specifies the destination context.buf points to a buffer
that containscount bytes of PostScript language code. The code in the buffer will
be converted according to the context’s encoding parameters as needed; refer to
the system-specific documentation for a list of supported conversions.

CL-42 Client Library Reference Manual 15 April 1993

10 Single-Operator Procedures

For each operator defined in the PostScript language, the Client Libraryprovides
a procedure to invoke the most common usage of the operator. These are called the
single-operator procedures, orsingle-ops. If the predefined usage is not the one
you need, you can write wraps for variant forms of the operators.

There are two Client Library header files for single-ops:dpsops.hand psops.h.
The name of the Client Library single-op is the name of the PostScript operator
preceded by either DPS or PS:

DPS prefix Used when the context is explicitly specified; for example,
DPSgsave . The first argument must be of typeDPSContext.
These single-ops are defined indpsops.h.

PS prefix Used when the context is assumed to be the current context; for
example,PSgsave . These single-ops are defined inpsops.h. The
procedureDPSSetContext , defined indpsclient.h, sets thecurrent
context.

For example, to execute the PostScript operatortranslate , the application can call

DPStranslate(ctxt, 1.23, 43.56)

wherectxt is a variable of typeDPSContext, the handle that represents a
PostScript execution context.

Note: Most PostScript operator names are lowercase, but some contain uppercase
letters; for exampleFontDirectory . In either case, the name of the corresponding
single-op is formed by using PS or DPS as a preface.

TheDPStranslate procedure sends the binary encoding of

1.23 43.56 translate

to execute inctxt.

10.1 Setting the Current Context

The single-ops inpsops.h assume the current context. TheDPSSetContext
procedure, defined indpsclient.h, sets the current context. When the application
deals with only one context it is convenient to use the procedures inpsops.h
rather than those indpsops.h. In this case, the application would set the current
context during its initialization phase:

DPSSetContext(ctxt);

In subsequent calls on the procedures inpsops.h, ctxt is used implicitly. For
example:

PStranslate(1.23, 43.56);

Client Library Reference Manual 10 Single-Operator Procedures CL-43

C
L

has the same effect as

DPStranslate(ctxt, 1.23, 43.56);

The explicit method is preferred for situations that require intermingling of calls to
multiple contexts. It is also useful in subroutine libraries that should not disturb
the application’s current context.

Note: It is important to pass the correct C types to the single-ops. In general, if a
PostScript operator takes operands of arbitrary numeric type, the corresponding
single-op takes parameters of typefloat. Coordinates are always typefloat.
Passing an integer literal to a procedure that expects a floating-point literal is a
common error:

incorrect: PSlineto(72, 72);

correct: PSlineto(72.0, 72.0);

Procedures that appear to have no input arguments might actually take their
operands from the operand stack, for example,PSdef andDPSdef .

10.2 Types in Single-Operator Procedures

When using single-operator procedures, inspect the calling protocol (that is,
order and types of formal parameters) for every procedure to be called.

Note: Throughout this section, references to single-ops with a DPS prefix are
applicable to the equivalent procedures with a PS prefix.

10.3 Guidelines for Associating Data Types with
Single-Operator Procedures

There is no completely consistent system for associating data types with
particular single-ops. In general, look up the definition in the header file.
However, there are a few rules that can be applied. All these rules have
exceptions.

• Coordinates are specified as typefloat. For example, all of the standard path
construction operators(moveto , lineto , curveto , and so on) take typefloat.

• Booleans are specified as typeint. The comment
/* int *b */

 or
/* int *it */

in the header file means that the procedure returns a boolean.

CL-44 Client Library Reference Manual 15 April 1993

• If the operator takes either integer or floating-point numbers, the
corresponding procedure takes typefloat. If the operator specifies a number
type (such asrand andvmreclaim), the procedure takes arguments of that
type (typically typeint).

• Operators that return values must always be specified with a pointer to the
appropriate data type. For example,currentgray returns the current gray
value of the graphics state. You must passDPScurrentgray a pointer to a
variable of typefloat.

• If an operator takes a data type that does not have a directly analogous C type,
such as dictionaries, graphics states, and executable arrays, the single-op takes
no arguments. It is assumed that you will arrange for the appropriate data to be
on the operand stack before calling the procedure; seeDPSsendchararray
andDPSsendfloat , among others.

• If a single-op takes or returns a matrix, the matrix isspecified as
float m[]

which is an array of six floating-point numbers.

• In general, the integer parametersize is used to specify the length of a
variable-length array; see, for example,DPSxshow . For single-ops that take
two variable-length arrays as parameters, the length of the first array is
specified by the integern; the length of the second array is specified by the
integerI; see, for example,DPSustroke .

The following operators are worth noting for unusual order and types of
arguments, or for other irregularities. After reading these descriptions, inspect the
declarations in the listing or in the header file.

• DPSdefineuserobject takes no arguments. One would expect it to take at
least the index argument, but because of the requirement to have the arbitrary
object on the top of the stack, it is better to send the index down separately,
perhaps withDPSsendint .

• DPSgetchararray and other get arrayoperatorsspecify the length of the array
first, followed by the array. (Mnemonic: get the array last.)

• DPSsendchararray , DPSsendfloatarray , and other send array operators
specify the array first, followed by the length of the array. (Mnemonic: send
the array first.)

• DPSinfill , DPSinstroke , andDPSinufill support only thex, y coordinate
version of the operator. The optional second userpath argument is not
supported.

Client Library Reference Manual 10 Single-Operator Procedures CL-45

C
L

• DPSinueofill , DPSinufill , DPSinustroke , DPSuappend , DPSueofill ,
DPSufill , DPSustroke , andDPSustrokepath take a userpath in the form of
an encoded number string and operator string. The lengths of the strings
follow the strings themselves as argument.

• DPSsetdash takes an array of numbers of typefloat for the dash pattern.

• DPSselectfont takes typefloat for the font scale parameter.

• DPSsetgray takes typefloat. (DPSsetgray(1) is wrong.)

• DPSxshow , DPSxyshow , andDPSyshow take an array ofnumbers of type
float for specifying the coordinates of each character.

• DPSequals is the procedure equivalent to the= operator.

• DPSequalsequals is the procedure equivalent to the== operator.

• DPSversion returns the version number in a character arraybuf[] whose
length is specified bybufsize.

10.3.1 Special Cases

A few of the single-operator procedures have been optimized to take user objects
for arguments, since they are most commonly used in this way. In the list in
section 10.4, these user object arguments are specified as typeint, which is the
correct type of a user object.

• DPScurrentgstate takes a user object that represents the gstate object into
which the current graphics state should be stored. The gstate object is left on
the stack.

• DPSsetfont takes a user object that represents the font dictionary.

• DPSsetgstate takes a user object that represents the gstate object that the
current graphics state should be set to.

10.4 dpsops.h Procedure Declarations

The procedures indpsops.h andpsops.h are identical except for the first
argument. dpsops.hprocedures require thectxt argument;psops.h procedures do
not. The procedure name is the lowercase PostScript language operator name
preceded byDPS or PS as appropriate. Only thedpsops.hprocedures are listed
here.

Note: DPSSetContext must have been called before calling any procedure in psops.h.

CL-46 Client Library Reference Manual 15 April 1993

extern void DPSFontDirectory(/* DPSContext ctxt */);

extern void DPSISOLatin1Encoding(/* DPSContext ctxt */);

extern void DPSSharedFontDirectory(/* DPSContext ctxt */);

extern void DPSStandardEncoding(/* DPSContext ctxt */);

extern void DPSUserObjects(/* DPSContext ctxt */);

extern void DPSabs(/* DPSContext ctxt */);

extern void DPSadd(/* DPSContext ctxt */);

extern void DPSaload(/* DPSContext ctxt */);

extern void DPSanchorsearch(/* DPSContext ctxt;

int *truth */);

extern void DPSand(/* DPSContext ctxt */);

extern void DPSarc(/* DPSContext ctxt;

float x, y, r, angle1, angle2 */);

extern void DPSarcn(/* DPSContext ctxt;

float x, y, r, angle1, angle2 */);

extern void DPSarct(/* DPSContext ctxt;

float x1, y1, x2, y2, r */);

extern void DPSarcto(/* DPSContext ctxt;

float x1, y1, x2, y2, r;

float *xt1, *yt1, *xt2, *yt2 */);

extern void DPSarray(/* DPSContext ctxt; int len */);

extern void DPSashow(/* DPSContext ctxt;

float x, y; char *s */);

extern void DPSastore(/* DPSContext ctxt */);

extern void DPSatan(/* DPSContext ctxt */);

extern void DPSawidthshow(/* DPSContext ctxt; f loat cx, cy;

int c; float ax, ay; char *s */);

extern void DPSbanddevice(/* DPSContext ctxt */);

extern void DPSbegin(/* DPSContext ctxt */);

extern void DPSbind(/* DPSContext ctxt */);

extern void DPSbitshift(/* DPSContext ctxt; int shift */);

extern void DPSbytesavailable(/* DPSContext ctxt; int *n */);

extern void DPScachestatus(/* DPSContext ctxt */);

extern void DPSceiling(/* DPSContext ctxt */);

extern void DPScharpath(/* DPSContext ctxt;

char *s; int b */);

extern void DPSclear(/* DPSContext ctxt */);

extern void DPScleardictstack(/* DPSContext ctxt */);

extern void DPScleartomark(/* DPSContext ctxt */);

extern void DPSclip(/* DPSContext ctxt */);

extern void DPSclippath(/* DPSContext ctxt */);

extern void DPSclosefile(/* DPSContext ctxt */);

extern void DPSclosepath(/* DPSContext ctxt */);

extern void DPScolorimage(/* DPSContext ctxt */);

extern void DPSconcat(/* DPSContext ctxt; float m */);

extern void DPSconcatmatrix(/* DPSContext ctxt */);

extern void DPScondition(/* DPSContext ctxt */);

extern void DPScopy(/* DPSContext ctxt; int n */);

extern void DPScopypage(/* DPSContext ctxt */);

extern void DPScos(/* DPSContext ctxt */);

extern void DPScount(/* DPSContext ctxt; int *n */);

Client Library Reference Manual 10 Single-Operator Procedures CL-47

C
L

extern void DPScountdictstack(/* DPSContext ctxt; int *n */);

extern void DPScountexecstack(/* DPSContext ctxt; int *n */);

extern void DPScounttomark(/* DPSContext ctxt; int *n */);

extern void DPScurrentblackgeneration(/* DPSContext ctxt */);

extern void DPScurrentcacheparams(/* DPSContext ctxt */);

extern void DPScurrentcmykcolor(/* DPSContext ctxt;

float *c, *m, *y, *k */);

extern void DPScurrentcolorscreen(/* DPSContext ctxt */);

extern void DPScurrentcolortransfer(/* DPSContext ctxt */);

extern void DPScurrentcontext(/* DPSContext ctxt;

int *cid */);

extern void DPScurrentdash(/* DPSContext ctxt */);

extern void DPScurrentdict(/* DPSContext ctxt */);

extern void DPScurrentfile(/* DPSContext ctxt */);

extern void DPScurrentflat(/* DPSContext ctxt;

float *flatness */);

extern void DPScurrentfont(/* DPSContext ctxt */);

extern void DPScurrentgray(/* DPSContext ctxt;

float *gray */);

extern void DPScurrentgstate(/* DPSContext ctxt; int gst */);

extern void DPScurrenthalftone(/* DPSContext ctxt */);

extern void DPScurrenthalftonephase(/* DPSContext ctxt;

float *x, *y */);

extern void DPScurrenthsbcolor(/* DPSContext ctxt;

float *h, *s, *b */);

extern void DPScurrentlinecap(/* DPSContext ctxt;

int *linecap */);

extern void DPScurrentlinejoin(/* DPSContext ctxt;

int *linejoin */);

extern void DPScurrentlinewidth(/* DPSContext ctxt;

float *width */);

extern void DPScurrentmatrix(/* DPSContext ctxt */);

extern void DPScurrentmiterlimit(/* DPSContext ctxt;

float *limit */);

extern void DPScurrentobjectformat(/* DPSContext ctxt;

int *code */);

extern void DPScurrentpacking(/* DPSContext ctxt; int *b */);

extern void DPScurrentpoint(/* DPSContext ctxt;

float *x, *y */);

extern void DPScurrentrgbcolor(/* DPSContext ctxt;

float *r, *g, *b */);

extern void DPScurrentscreen(/* DPSContext ctxt */);

extern void DPScurrentshared(/* DPSContext ctxt; int *b */);

extern void DPScurrentstrokeadjust(/* DPSContext ctxt;

int *b */);

extern void DPScurrenttransfer(/* DPSContext ctxt */);

extern void DPScurrentundercolorremoval(/*

DPSContext ctxt */);

extern void DPScurveto(/* DPSContext ctxt;

float x1, y1, x2, y2, x3, y3 */);

extern void DPScvi(/* DPSContext ctxt */);

extern void DPScvlit(/* DPSContext ctxt */);

CL-48 Client Library Reference Manual 15 April 1993

extern void DPScvn(/* DPSContext ctxt */);

extern void DPScvr(/* DPSContext ctxt */);

extern void DPScvrs(/* DPSContext ctxt */);

extern void DPScvs(/* DPSContext ctxt */);

extern void DPScvx(/* DPSContext ctxt */);

extern void DPSdef(/* DPSContext ctxt */);

extern void DPSdefaultmatrix(/* DPSContext ctxt */);

extern void DPSdefinefont(/* DPSContext ctxt */);

extern void DPSdefineusername(/* DPSContext ctxt;

int i; char *username */);

extern void DPSdefineuserobject(/* DPSContext ctxt */);

extern void DPSdeletefile(/* DPSContext ctxt;

char *filename */);

extern void DPSdetach(/* DPSContext ctxt */);

extern void DPSdeviceinfo(/* DPSContext ctxt */);

extern void DPSdict(/* DPSContext ctxt; int len */);

extern void DPSdictstack(/* DPSContext ctxt */);

extern void DPSdiv(/* DPSContext ctxt */);

extern void DPSdtransform(/* DPSContext ctxt;

float x1, y1; float *x2, *y2 */);

extern void DPSdup(/* DPSContext ctxt */);

extern void DPSecho(/* DPSContext ctxt; int b */);

extern void DPSend(/* DPSContext ctxt */);

extern void DPSeoclip(/* DPSContext ctxt */);

extern void DPSeofill(/* DPSContext ctxt */);

extern void DPSeoviewclip(/* DPSContext ctxt */);

extern void DPSeq(/* DPSContext ctxt */);

extern void DPSequals(/* DPSContext ctxt */);

extern void DPSequalsequals(/* DPSContext ctxt */);

extern void DPSerasepage(/* DPSContext ctxt */);

extern void DPSerrordict(/* DPSContext ctxt */);

extern void DPSexch(/* DPSContext ctxt */);

extern void DPSexec(/* DPSContext ctxt */);

extern void DPSexecstack(/* DPSContext ctxt */);

extern void DPSexecuserobject(/* DPSContext ctxt;

int userObjIndex */);

extern void DPSexecuteonly(/* DPSContext ctxt */);

extern void DPSexit(/* DPSContext ctxt */);

extern void DPSexp(/* DPSContext ctxt */);

extern void DPSfalse(/* DPSContext ctxt */);

extern void DPSfile(/* DPSContext ctxt;

char *name, *access */);

extern void DPSfilenameforall(/* DPSContext ctxt */);

extern void DPSf ileposition(/* DPSContext ctxt; int *pos */);

extern void DPSfill(/* DPSContext ctxt */);

extern void DPSf indfont(/* DPSContext ctxt; char *name */);

extern void DPSflattenpath(/* DPSContext ctxt */);

extern void DPSfloor(/* DPSContext ctxt */);

extern void DPSflush(/* DPSContext ctxt */);

extern void DPSflushfile(/* DPSContext ctxt */);

extern void DPSfor(/* DPSContext ctxt */);

extern void DPSforall(/* DPSContext ctxt */);

extern void DPSfork(/* DPSContext ctxt */);

Client Library Reference Manual 10 Single-Operator Procedures CL-49

C
L

extern void DPSframedevice(/* DPSContext ctxt */);

extern void DPSge(/* DPSContext ctxt */);

extern void DPSget(/* DPSContext ctxt */);

extern void DPSgetboolean(/* DPSContext ctxt; int *it */);

extern void DPSgetchararray(/* DPSContext ctxt;

int size; char s */);

extern void DPSgetf loat(/* DPSContext ctxt; f loat *it */);

extern void DPSgetfloatarray(/* DPSContext ctxt;

int size; float a */);

extern void DPSgetint(/* DPSContext ctxt; int *it */);

extern void DPSgetintarray(/* DPSContext ctxt;

int size; int a */);

extern void DPSgetinterval(/* DPSContext ctxt */);

extern void DPSgetstring(/* DPSContext ctxt; char *s */);

extern void DPSgrestore(/* DPSContext ctxt */);

extern void DPSgrestoreall(/* DPSContext ctxt */);

extern void DPSgsave(/* DPSContext ctxt */);

extern void DPSgstate(/* DPSContext ctxt */);

extern void DPSgt(/* DPSContext ctxt */);

extern void DPSidentmatrix(/* DPSContext ctxt */);

extern void DPSidiv(/* DPSContext ctxt */);

extern void DPSidtransform(/* DPSContext ctxt;

float x1, y1; float *x2, *y2 */);

extern void DPSif(/* DPSContext ctxt */);

extern void DPSifelse(/* DPSContext ctxt */);

extern void DPSimage(/* DPSContext ctxt */);

extern void DPSimagemask(/* DPSContext ctxt */);

extern void DPSindex(/* DPSContext ctxt; int i */);

extern void DPSineofill(/* DPSContext ctxt;

float x, y; int *b */);

extern void DPSinfill(/* DPSContext ctxt;

float x, y; int *b */);

extern void DPSinitclip(/* DPSContext ctxt */);

extern void DPSinitgraphics(/* DPSContext ctxt */);

extern void DPSinitmatrix(/* DPSContext ctxt */);

extern void DPSinitviewclip(/* DPSContext ctxt */);

extern void DPSinstroke(/* DPSContext ctxt;

float x, y; int *b */);

extern void DPSinueofill(/* DPSContext ctxt;

float x, y; char nums[]; int n;

char ops[]; int l; int *b */);

extern void DPSinufill(/* DPSContext ctxt; float x, y;

char nums[]; int n; char ops[];

int l; int *b */);

extern void DPSinustroke(/* DPSContext ctxt; float x, y;

char nums[]; int n; char ops[];

int l; int *b */);

extern void DPSinvertmatrix(/* DPSContext ctxt */);

extern void DPSitransform(/* DPSContext ctxt; f loat x1, y1;

float *x2, *y2 */);

extern void DPSjoin(/* DPSContext ctxt */);

extern void DPSknown(/* DPSContext ctxt; int *b */);

extern void DPSkshow(/* DPSContext ctxt; char *s */);

CL-50 Client Library Reference Manual 15 April 1993

extern void DPSle(/* DPSContext ctxt */);

extern void DPSlength(/* DPSContext ctxt; int *len */);

extern void DPSlineto(/* DPSContext ctxt; f loat x, y */);

extern void DPSln(/* DPSContext ctxt */);

extern void DPSload(/* DPSContext ctxt */);

extern void DPSlock(/* DPSContext ctxt */);

extern void DPSlog(/* DPSContext ctxt */);

extern void DPSloop(/* DPSContext ctxt */);

extern void DPSlt(/* DPSContext ctxt */);

extern void DPSmakefont(/* DPSContext ctxt */);

extern void DPSmark(/* DPSContext ctxt */);

extern void DPSmatrix(/* DPSContext ctxt */);

extern void DPSmaxlength(/* DPSContext ctxt; int *len */);

extern void DPSmod(/* DPSContext ctxt */);

extern void DPSmonitor(/* DPSContext ctxt */);

extern void DPSmoveto(/* DPSContext ctxt; f loat x, y */);

extern void DPSmul(/* DPSContext ctxt */);

extern void DPSne(/* DPSContext ctxt */);

extern void DPSneg(/* DPSContext ctxt */);

extern void DPSnewpath(/* DPSContext ctxt */);

extern void DPSnoaccess(/* DPSContext ctxt */);

extern void DPSnot(/* DPSContext ctxt */);

extern void DPSnotify(/* DPSContext ctxt */);

extern void DPSnull(/* DPSContext ctxt */);

extern void DPSnulldevice(/* DPSContext ctxt */);

extern void DPSor(/* DPSContext ctxt */);

extern void DPSpackedarray(/* DPSContext ctxt */);

extern void DPSpathbbox(/* DPSContext ctxt;

float *llx, *lly, *urx, *ury */);

extern void DPSpathforall(/* DPSContext ctxt */);

extern void DPSpop(/* DPSContext ctxt */);

extern void DPSprint(/* DPSContext ctxt */);

extern void DPSprintobject(/* DPSContext ctxt; int tag */);

extern void DPSprompt(/* DPSContext ctxt */);

extern void DPSpstack(/* DPSContext ctxt */);

extern void DPSput(/* DPSContext ctxt */);

extern void DPSputinterval(/* DPSContext ctxt */);

extern void DPSquit(/* DPSContext ctxt */);

extern void DPSrand(/* DPSContext ctxt */);

extern void DPSrcheck(/* DPSContext ctxt; int *b */);

extern void DPSrcurveto(/* DPSContext ctxt;

float x1, y1, x2, y2, x3, y3 */);

extern void DPSread(/* DPSContext ctxt; int *b */);

extern void DPSreadhexstring(/* DPSContext ctxt; int *b */);

extern void DPSreadline(/* DPSContext ctxt; int *b */);

extern void DPSreadonly(/* DPSContext ctxt */);

extern void DPSreadstring(/* DPSContext ctxt; int *b */);

extern void DPSrealtime(/* DPSContext ctxt; int *i */);

extern void DPSrectclip(/* DPSContext ctxt;

float x, y, w, h */);

extern void DPSrectfill(/* DPSContext ctxt;

float x, y, w, h */);

extern void DPSrectstroke(/* DPSContext ctxt;

Client Library Reference Manual 10 Single-Operator Procedures CL-51

C
L

float x, y, w, h */);

extern void DPSrectviewclip(/* DPSContext ctxt;

float x, y, w, h */);

extern void DPSrenamefile(/* DPSContext ctxt;

char *old, *new */);

extern void DPSrenderbands(/* DPSContext ctxt */);

extern void DPSrepeat(/* DPSContext ctxt */);

extern void DPSresetfile(/* DPSContext ctxt */);

extern void DPSrestore(/* DPSContext ctxt */);

extern void DPSreversepath(/* DPSContext ctxt */);

extern void DPSrlineto(/* DPSContext ctxt; f loat x, y */);

extern void DPSrmoveto(/* DPSContext ctxt; f loat x, y */);

extern void DPSroll(/* DPSContext ctxt; int n, j */);

extern void DPSrotate(/* DPSContext ctxt; f loat angle */);

extern void DPSround(/* DPSContext ctxt */);

extern void DPSrrand(/* DPSContext ctxt */);

extern void DPSrun(/* DPSContext ctxt; char *f ilename */);

extern void DPSsave(/* DPSContext ctxt */);

extern void DPSscale(/* DPSContext ctxt; float x, y */);

extern void DPSscalefont(/* DPSContext ctxt; f loat size */);

extern void DPSscheck(/* DPSContext ctxt; int *b */);

extern void DPSsearch(/* DPSContext ctxt; int *b */);

extern void DPSselectfont(/* DPSContext ctxt;

char *name; float scale */);

extern void DPSsendboolean(/* DPSContext ctxt; int it */);

extern void DPSsendchararray(/* DPSContext ctxt; char s[];

int size */);

extern void DPSsendf loat(/* DPSContext ctxt; f loat it */);

extern void DPSsendf loatarray(/* DPSContext ctxt; f loat a[];

int size */);

extern void DPSsendint(/* DPSContext ctxt; int it */);

extern void DPSsendintarray(/* DPSContext ctxt; int a[];

int size */);

extern void DPSsendstring(/* DPSContext ctxt; char *s */);

extern void DPSsetbbox(/* DPSContext ctxt;

float llx, lly, urx, ury */);

extern void DPSsetblackgeneration(/* DPSContext ctxt */);

extern void DPSsetcachedevice(/* DPSContext ctxt;

f loat wx, wy, llx, lly, urx, ury */);

extern void DPSsetcachelimit(/* DPSContext ctxt; f loat n */);

extern void DPSsetcacheparams(/* DPSContext ctxt */);

extern void DPSsetcharwidth(/* DPSContext ctxt;

float wx, wy */);

extern void DPSsetcmykcolor(/* DPSContext ctxt;

float c, m, y, k */);

extern void DPSsetcolorscreen(/* DPSContext ctxt */);

extern void DPSsetcolortransfer(/* DPSContext ctxt */);

extern void DPSsetdash(/* DPSContext ctxt; float pat[];

int size; float offset */);

extern void DPSsetfileposition(/* DPSContext ctxt;

int pos */);

extern void DPSsetflat(/* DPSContext ctxt;

float flatness */);

CL-52 Client Library Reference Manual 15 April 1993

extern void DPSsetfont(/* DPSContext ctxt; int f */);

extern void DPSsetgray(/* DPSContext ctxt; f loat gray */);

extern void DPSsetgstate(/* DPSContext ctxt; int gst */);

extern void DPSsethalftone(/* DPSContext ctxt */);

extern void DPSsethalftonephase(/* DPSContext ctxt;

float x, y */);

extern void DPSsethsbcolor(/* DPSContext ctxt;

float h, s, b */);

extern void DPSsetlinecap(/* DPSContext ctxt; int

linecap */);

extern void DPSsetlinejoin(/* DPSContext ctxt;

int linejoin */);

extern void DPSsetlinewidth(/* DPSContext ctxt;

float width */);

extern void DPSsetmatrix(/* DPSContext ctxt */);

extern void DPSsetmiterlimit(/* DPSContext ctxt;

float limit */);

extern void DPSsetobjectformat(/* DPSContext ctxt;

int code */);

extern void DPSsetpacking(/* DPSContext ctxt; int b */);

extern void DPSsetrgbcolor(/* DPSContext ctxt;

float r, g, b */);

extern void DPSsetscreen(/* DPSContext ctxt */);

extern void DPSsetshared(/* DPSContext ctxt; int b */);

extern void DPSsetstrokeadjust(/* DPSContext ctxt; int b */);

extern void DPSsettransfer(/* DPSContext ctxt */);

extern void DPSsetucacheparams(/* DPSContext ctxt */);

extern void DPSsetundercolorremoval(/* DPSContext ctxt */);

extern void DPSsetvmthreshold(/* DPSContext ctxt; int i */);

extern void DPSshareddict(/* DPSContext ctxt */);

extern void DPSshow(/* DPSContext ctxt; char *s */);

extern void DPSshowpage(/* DPSContext ctxt */);

extern void DPSsin(/* DPSContext ctxt */);

extern void DPSsqrt(/* DPSContext ctxt */);

extern void DPSsrand(/* DPSContext ctxt */);

extern void DPSstack(/* DPSContext ctxt */);

extern void DPSstart(/* DPSContext ctxt */);

extern void DPSstatus(/* DPSContext ctxt; int *b */);

extern void DPSstatusdict(/* DPSContext ctxt */);

extern void DPSstop(/* DPSContext ctxt */);

extern void DPSstopped(/* DPSContext ctxt */);

extern void DPSstore(/* DPSContext ctxt */);

extern void DPSstring(/* DPSContext ctxt; int len */);

extern void DPSstringwidth(/* DPSContext ctxt;

char *s; float *xp, *yp */);

extern void DPSstroke(/* DPSContext ctxt */);

extern void DPSstrokepath(/* DPSContext ctxt */);

extern void DPSsub(/* DPSContext ctxt */);

extern void DPSsystemdict(/* DPSContext ctxt */);

extern void DPStoken(/* DPSContext ctxt; int *b */);

extern void DPStransform(/* DPSContext ctxt;

float x1, y1; float *x2, *y2 */);

extern void DPStranslate(/* DPSContext ctxt; f loat x, y */);

Client Library Reference Manual 10 Single-Operator Procedures CL-53

C
L

extern void DPStrue(/* DPSContext ctxt */);

extern void DPStruncate(/* DPSContext ctxt */);

extern void DPStype(/* DPSContext ctxt */);

extern void DPSuappend(/* DPSContext ctxt; char nums[]; int n;

char ops[]; int l */);

extern void DPSucache(/* DPSContext ctxt */);

extern void DPSucachestatus(/* DPSContext ctxt */);

extern void DPSueofill(/* DPSContext ctxt;

char nums[]; int n; char ops[];

int l */);

extern void DPSufill(/* DPSContext ctxt; char nums[];

int n; char ops[]; int l */);

extern void DPSundef(/* DPSContext ctxt; char *name */);

extern void DPSundefinefont(/* DPSContext ctxt;

char *name */);

extern void DPSundefineuserobject(/* DPSContext ctxt;

int userObjIndex */);

extern void DPSupath(/* DPSContext ctxt; int b */);

extern void DPSuserdict(/* DPSContext ctxt */);

extern void DPSusertime(/* DPSContext ctxt;

int *milliseconds */);

extern void DPSustroke(/* DPSContext ctxt; char nums[];

int n; char ops[]; int l */);

extern void DPSustrokepath(/* DPSContext ctxt; char nums[];

int n; char ops[]; int l */);

extern void DPSversion(/* DPSContext ctxt;

int bufsize; char buf */);

extern void DPSviewclip(/* DPSContext ctxt */);

extern void DPSviewclippath(/* DPSContext ctxt */);

extern void DPSvmreclaim(/* DPSContext ctxt; int code */);

extern void DPSvmstatus(/* DPSContext ctxt;

int *level, *used, *maximum */);

extern void DPSwait(/* DPSContext ctxt */);

extern void DPSwcheck(/* DPSContext ctxt; int *b */);

extern void DPSwhere(/* DPSContext ctxt; int *b */);

extern void DPSwidthshow(/* DPSContext ctxt; float x, y;

int c; char *s */);

extern void DPSwrite(/* DPSContext ctxt */);

extern void DPSwritehexstring(/* DPSContext ctxt */);

extern void DPSwriteobject(/* DPSContext ctxt; int tag */);

extern void DPSwritestring(/* DPSContext ctxt */);

extern void DPSwtranslation(/* DPSContext ctxt;

float *x, *y */);

extern void DPSxcheck(/* DPSContext ctxt; int *b */);

extern void DPSxor(/* DPSContext ctxt */);

extern void DPSxshow(/* DPSContext ctxt; char *s;

float numarray[]; int size */);

extern void DPSxyshow(/* DPSContext ctxt; char *s;

float numarray[]; int size */);

extern void DPSyield(/* DPSContext ctxt */);

extern void DPSyshow(/* DPSContext ctxt; char *s;

float numarray[]; int size */);

CL-54 Client Library Reference Manual 15 April 1993

11 Runtime Support for Wrapped Procedures

This section describes the procedures in thedpsfriends.h header file that are
called by wrapped procedures: the C-callable procedures that are output by the
pswrap translator. This information is not normally required by the application
programmer.

A description of dpsfriends.h is provided for those who need finer control over
the following areas:

• Transmission of code for execution

• Handling of result values

• Mapping of user names to user name indexes

11.1 Sending Code for Execution

One of the primary purposes of the Client Library is to provide runtime support
for the code generated bypswrap. Each wrapped procedure builds a binary object
sequence that represents the PostScript language code to be executed. Since a
binary object sequence is structured, the procedures for sending a binary object
sequence are designed to take advantage of this structure.

The following procedures efficiently process binary object sequences generated
by wrapped procedures:

• DPSBinObjSeqWrite sends the beginning of a new binary object sequence.
This part includes, at minimum, the header and the top-level sequence of
objects. It can also include subsidiary array elements and/or string characters
if those arrays and strings are static (lengths are known at compile time and
there are no intervening arrays or strings of varying length).
DPSBinObjSeqWrite can convert the binary object sequence to another
encoding, depending on theDPSContextRec encoding variables. For a
particular wrapped procedure,DPSBinObjSeqWrite is called once.

• DPSWriteTypedObjectArray sends arrays (excluding strings) that were
specified as input arguments to a wrapped procedure. It writes PostScript
language code specified by the context’s format and encoding variables,
performing appropriate conversions as needed. For a particular wrapped
procedure,DPSWriteTypedObjectArray is called zero or more times, once
for each input array specified.

• DPSWriteStringChars sends the text of strings or names. It appends
characters to the current binary object sequence. For a particular wrapped
procedure,DPSWriteStringChars is called zero or more times to send the
text of names and strings.

Client Library Reference Manual 11 Runtime Support for Wrapped Procedures CL-55

C
L

The length of arrays and strings sent byDPSWriteTypedObjectArray and
DPSWriteStringChars must be consistent with the lengthinformation specified
in the binary object sequence header sent byDPSBinObjSeqWrite . In
particular, don’t rely onsizeof to return the correct size value of the binary
object sequence.

11.2 Receiving Results

Each wrapped procedure with output arguments constructs an array containing
elements of typeDPSResultsRec. This array is called the result table. The index
position of each element corresponds to the ordinal position of each output
argument as defined in the wrapped procedure: The first table entry (index 0)
corresponds to the first output argument, the second table entry (index 1)
corresponds to the second argument, and so on.

Each entry defines one of the output arguments of a wrapped procedure by
specifying a data type, a count, and a pointer to the storage for the value.
DPSSetResultTable registers the result table with the context.

The interpreter sends return values to the application as binary object sequences.
Wrapped procedures that have output arguments use theprintobject operator to
tag and send each return value. The tag corresponds to the index of the output
argument in the result table. Afterthe wrapped procedure finishes sending the
PostScript language program, it callsDPSAwaitReturnValues to wait for all of
the results to come back.

As the Client Library receives results from the interpreter, it places each result
into the output argument specified by the result table. The tag of each result
object in the sequence is used as an index into the result table. When the Client
Library receives a tag that is greater than the last defined tag number,
DPSAwaitReturnValues returns. This final tag is called the termination tag.

Certain conventions must be followed to handle return values for wrapped
procedures properly:

• The tag associated with the return value is the ordinal of the output parameter,
as listed in the definition of the wrapped procedure, starting from 0 and
counting from left to right (see the following example).

• If the count field of theDPSResultsRec is –1, the expected result is a single
element, or scalar. Return values with the same tag overwrite previous values.
Otherwise, thecount indicates the number of array elements that remain to be
received. In this case, a series of return values with the same tag are stored in
successive elements of the array. If the value ofcount is zero, further array
elements of the same tag value are ignored.

CL-56 Client Library Reference Manual 15 April 1993

• DPSAwaitReturnV alues returns when it notices that theresultTable pointer
in theDPSContextRec data object isNULL. The code that handles return
values should note the reception of the termination tag by settingresultTable
to NULL to indicate that there are no more return values to receive for this
wrapped procedure.

Example 7 shows a wrap with return values. Resulting PostScript language code
is shown in the trace that follows the wrap definition.

Example 7 Implementation of wrap return values

Wrap definition:

defineps Example(| int *x, *y, *z)

10 20 30 x y z

endps

PostScript language trace:

10 20 30

0 printobject

% pop integer 30 off the operand stack,

% use tag = 0 (result table index = 0,

% first parameter 'x')

% write binary object sequence

1 printobject

% pop integer 20 off the operand stack,

% use tag = 1 (result table index = 1,

% second parameter 'y')

% write binary object sequence

2 printobject

% pop integer 10 off the operand stack,

% use tag = 2 (result table index = 2,

% third parameter 'z')

% write binary object sequence

0 3 printobject

% push dummy value 0 on operand stack

% pop integer 0 off operand stack,

% use tag = 3 (termination tag)

% write binary object sequence

flush

% make sure all data is sent back to the application

11.3 Managing User Names

Name indexes are the most efficient way to specify names in a binary object
sequence. The Client Library manages the mapping of user names to indexes.
Wrapped procedures map user names automatically. The first time a wrapped
procedure is called, it callsDPSMapNames to map all user names specified in
the wrapped procedure into indexes. The application can also call
DPSMapNames directly to obtain name mappings.

Client Library Reference Manual 11 Runtime Support for Wrapped Procedures CL-57

C
L

A name map is stored in a space. All contexts associated with that space have the
same name map. The name mapping for the context is automatically kept
up-to-date by the Client Library in the following way:

• Every wrapped procedure callsDPSBinObjSeqWrite , which, in addition to
sending the binary object sequence, checks to see if the user name map is
up-to-date.

• DPSBinObjSeqWrite callsDPSUpdateNameMap if the name map of the
space does not agree with the Client Library’s name map.
DPSUpdateNameMap can send a series ofdefineusername operators to
the PostScript interpreter.

DPSNameFromIndex returns the text for the user name with the given index.
The string returned is owned by the Client Library; treat it as a read-only string.

11.4 Binary Object Sequences

Syntactically, a binary object sequence is a single token. The structure is
described in section 3.12.1, “Binary Tokens,” of thePostScript Language
Reference Manual, Second Edition. The definitions in this section correspond to
the components of a binary object sequence.

#define DPS_HEADER_SIZE 4

#define DPS_HI_IEEE 128

#define DPS_LO_IEEE 129

#define DPS_HI_NATIVE 130

#define DPS_LO_NATIVE 131

#ifndef DPS_DEF_TOKENTYPE

#define DPS_DEF_TOKENTYPE DPS_HI_IEEE

#endif DPS_DEF_TOKENTYPE

typedef struct {

unsigned char tokenType;

unsigned char nTopElements;

unsigned short length;

DPSBinObjRec objects[1];

} DPSBinObjSeqRec, *DPSBinObjSeq;

A binary object sequence begins with a 4-byte header. The first byte indicates the
token type. A binary object is defined by one of the four token type codes listed.
DPS_DEF_TOKENTYPE defines the default token type for binary object
sequences generated by a particular implementation of the Client Library. It must
be consistent with the machine architecture upon which the Client Library is
implemented.

CL-58 Client Library Reference Manual 15 April 1993

ThenTopElements byte indicates the number of top-level objects in the
sequence. A binary object sequence can have from 1 to 255 top-level objects. If
more top-level objects are required, use an extended binary object sequence.

The next two bytes form a nonzero 16-bit integer that is the total byte length of
the binary object sequence.

The header is followed by a sequence of objects:

#define DPS_NULL 0

#define DPS_INT 1

#define DPS_REAL 2

#define DPS_NAME 3

#define DPS_BOOL 4

#define DPS_STRING 5

#define DPS_IMMEDIATE 6

#define DPS_ARRAY 9

#define DPS_MARK 10

The first byte of an object describes its attributes and type. The types listed here
correspond to the PostScript language objects thatpswrap generates.

#define DPS_LITERAL 0

#define DPS_EXEC 0x080

The high-order bit indicates whether the object has the literal (0) or executable
(1) attribute. The next byte is the tag byte, which must be zero for objects sent to
the interpreter. Result values sent back from the interpreter use the tag field.

The next two bytes form a 16-bit integer that is the length of the object. The unit
value of the length field depends on the type of the object. For arrays, the length
indicates the number of elements in the array. For strings, the length indicates the
number of characters.

The last four bytes of the object form the value field. The interpretation of this
field depends on the type of the object.

typedef struct {

unsigned char attributedType;

unsigned char tag;

short length;

long int val;

} DPSBinObjGeneric;/* Boolean, int, string,

name and array */

typedef struct {

unsigned char attributedType;

unsigned char tag;

short length;

float realVal;

} DPSBinObjReal; /* float */

Client Library Reference Manual 11 Runtime Support for Wrapped Procedures CL-59

C
L

DPSBinObjGeneric andDPSBinObjReal are defined for the use of wraps. They
make it easier to initialize the static portions of the binary object sequence.

typedef struct {

unsigned char attributedType;

unsigned char tag;

short length;

union {

long int integerVal;

float realVal;

long int nameVal;/* offset or index */

long int booleanVal;

long int stringVal;/* offset */

long int arrayVal; /* offset */

} val;

} DPSBinObjRec;

DPSBinObjRec is a general-purpose variant record for interpreting an object in a
binary object sequence.

11.5 Extended Binary Object Sequences

An extended binary object sequence is required if there are more than 255
top-level objects in the sequence. The extended binary object sequence is
represented byDPSExtendedBinObjSeqRec, as follows:

The bytes are ordered in numeric fields according to the number representation
specified by the token type. The layout of the remainder of the extended binary
object sequence is identical to that of a normal binary object sequence.

11.6 dpsfriends.h Data Structures

This section describes the data structures used bypswrap as part of its support for
wrapped procedures.

Byte 0 Same as for a normal binary object sequence; it represents the
token type.

Byte 1 Set to zero; indicates that this is an extended binary object
sequence. (In a normal binary object sequence, this byte represents
the number of top-level objects.)

Bytes 2-3 A 16-bit value representing the number of top-level elements.

Bytes 4-7 A 32-bit value representing the overall length of the extended
binary object sequence.

CL-60 Client Library Reference Manual 15 April 1993

Note: TheDPSContextRec data structure and its handle,DPSContext, are part of the
dpsfriends.h header file. They are documented in section 9.2 because they are
also used by dpsclient.h procedures.

DPSBinObjGeneric typedef struct {

unsigned char attributedType;

unsigned char tag;

unsigned short length;

long int val;

} DPSBinObjGeneric; /* boolean, int, string, name and array */

DPSBinObjGeneric is defined for the use of wraps. It is used to initialize the
static portions of the binary object sequence. SeeDPSBinObjReal for typereal.

DPSBinObjReal typedef struct {

unsigned char attributedType;

unsigned char tag;

unsigned short length;

float realVal;

} DPSBinObjReal; /* float */

DPSBinObjReal is similar toDPSBinObjGeneric but represents a real number.

DPSBinObjRec typedef struct {

unsigned char attributedType;

unsigned char tag;

unsigned short length;

union {

long int integerVal;

float realVal;

long int nameVal; /* offset or index */

long int booleanVal;

long int stringVal; /* offset */

long int arrayVal; /* offset */

} val;

} DPSBinObjRec;

DPSBinObjRec is a general-purpose variant record for interpreting an object in a
binary object sequence.

Client Library Reference Manual 11 Runtime Support for Wrapped Procedures CL-61

C
L

DPSBinObjSeqRec typedef struct {

unsigned char token Type;

unsigned char nTopElements;

unsigned short length;

DPSBinObjRec objects[1];

} DPSBinObjSeqRec, *DPSBinObjSeq;

DPSBinObjSeqRec is provided as a convenience for accessing a binary object
sequence copied from an I/O buffer.

DPSDefinedType typedef enum {

dps_tBoolean,

dps_tChar, dps_tUChar,

dps_tFloat, dps_tDouble,

dps_tShort, dps_tUShort,

dps_tInt, dps_tUInt,

dps_tLong, dps_tULong

} DPSDefinedType;

DPSDefinedType enumerates the C data types used to describe wrap arguments.

DPSExtendedBinObjSeqRec typedef struct {

unsigned char tokenType;

unsigned char escape; /* zero if this is an ext. sequence */

unsigned short nTopElements;

unsigned long length;

DPSBinObjRec objects[1];

} DPSExtendedBinObjSeqRec, *DPSExtendedBinObjSeq;

DPSExtendedBinObjSeqRec has a purpose similar toDPSBinObjSeqRec but
it is used for extended binary object sequences.

DPSNameEncoding typedef enum {

dps_indexed, dps_strings

} DPSNameEncoding;

DPSNameEncoding defines the two possible encodings for user names in the
dps_binObjSeq anddps_encodedTokens forms of PostScript language
programs.

DPSProcs /* pointer to procedures record */

SeeDPSProcsRec.

CL-62 Client Library Reference Manual 15 April 1993

DPSProcsRec typedef struct {

void (*BinObjSeqWrite)(/* DPSContext ctxt; char *buf;

unsigned int count */);

void (*WriteTypedObjectArray)(/* DPSContext ctxt;

DPSDefinedType type; char *array;

unsigned int length */);

void (*WriteStringChars)(/* DPSContext ctxt;

char *buf; unsigned int count; */);

void (*WriteData)(/* DPSContext ctxt; char *buf;

unsigned int count */);

void (*WritePostScript)(/* DPSContext ctxt; char *buf;

unsigned int count */);

void (*FlushContext)(/* DPSContext ctxt */);

void (*ResetContext)(/* DPSContext ctxt */);

void (*UpdateNameMap)(/* DPSContext ctxt */);

void (*AwaitReturnValues)(/* DPSContext ctxt */);

void (*Interrupt)(/* DPSContext ctxt */);

void (*DestroyContext)(/* DPSContext ctxt */);

void (*WaitContext)(/* DPSContext ctxt */);

} DPSProcsRec, *DPSProcs;

DPSProcsRec defines the data structure pointed to byDPSProcs.

This record contains pointers to procedures that implement all the operations that
can be performed on a context. These procedures are analogous to the instance
methods of an object in an object-oriented language.

Note: You do not need to be concerned with the contents of this data structure. Do not
change theDPSProcs pointer or the contents ofDPSProcsRec.

DPSProgramEncoding typedef enum {

dps_ascii, dps_binObjSeq, dps_encodedTokens

} DPSProgramEncoding;

DPSProgramEncoding defines the three possible encodings of PostScript
language programs: ASCII encoding, binary object sequence encoding, and
binary token encoding.

DPSResultsRec typedef struct {

DPSDefinedType type;

int count;

char *value;

} DPSResultsRec, *DPSResults;

Each wrapped procedure constructs an array called theresult table, which
consists of elements of typeDPSResultsRec. The index position of each
element corresponds to the ordinal position of each output parameter as defined

Client Library Reference Manual 11 Runtime Support for Wrapped Procedures CL-63

C
L

in the wrapped procedure; for example, index 0 (the first table entry) corresponds
to the first output parameter, index 1 corresponds to the second output parameter,
and so on.

type specifies the format type of the return value.count specifies the number of
values expected; this supports array formats.value points to the location of the
first value; the storage beginning must have room forcount values of typetype.
If count is –1, value points to a scalar (single) result argument. Ifcount is zero,
any subsequent return values are ignored.

DPSSpace /* handle for space record */

SeeDPSSpaceRec.

DPSSpaceProcsRec typedef struct {

void (*DestroySpace)(/* DPSSpace space */);

} DPSSpaceProcsRec, *DPSSpaceProcs;

SeeDPSDestroySpace in dpsclient.h.

DPSSpaceRec typedef struct {

DPSSpaceProcs procs;

} DPSSpaceRec, *DPSSpace;

DPSSpaceRec provides a representation of a space. See also
DPSDestroySpace .

11.7 dpsfriends.h Procedures

The following is an alphabetical listing of the procedures in the Client Library
header file dpsfriends.h. These procedures are for experts only; most application
developers don’t need them. Thepswrap translator inserts calls to these
procedures when it creates the C-callable wrapped procedures you specify.

DPSAwaitReturnValues void DPSAwaitReturnValues(ctxt)

DPSContext ctxt;

DPSAwaitReturnValues waits for all results described by the result table; see
DPSResultRec. It uses the tag of each object in the sequence to find the
corresponding entry in the result table. WhenDPSAwaitReturnV alues receives
a tag that is greater than the last defined tag number, there are no more return

CL-64 Client Library Reference Manual 15 April 1993

values to be received and the procedure returns. This final tag is called the
termination tag.DPSSetResultT able must be caged to set the result table before
any calls toDPSBinObjSeqWrite .

DPSAwaitReturnValues can call the context’s error procedure with
dps_err_resultTagCheck ordps_err_resultTypeCheck. It returns prematurely if
it encounters adps_err_ps error.

DPSBinObjSeqWrite void DPSBinObjSeqWrite(ctxt, buf, count)

DPSContext ctxt;

char *buf;

unsigned int count;

DPSBinObjSeqWrite sends the beginning of a binary object sequence
generated by a wrap.buf points to a buffer containingcount bytes of a binary
object sequence.buf must point to the beginning of a sequence, which includes at
least the header and the entire top-level sequence of objects.

DPSBinObjSeqW rite can also include subsidiary array elements and/or strings.
It writes PostScript language as specified by the format and encoding variables of
ctxt, doing appropriate conversions as needed. If the buffer does not contain the
entire binary object sequence, one or more calls to
DPSWriteTypedObjectArray and/orDPSWriteStringChars must follow
immediately;buf and its contents must remain valid until the entire binary object
sequence has been written.DPSBinObjSeqWrite ensures that the user name
map is up-to-date.

DPSGetCurrentContext DPSContext DPSGetCurrentContext();

DPSGetCurrentContext returns the current context.

DPSMapNames void DPSMapNames(ctxt, nNames, names, indices)

DPSContext ctxt;

unsigned int nNames;

char **names;

long int **indices;

DPSMapNames maps all specified names into user name indices, sending new
defineusername definitions as needed.names is an array of strings whose
elements are the user names.nNames is the number of elements in the array.
indices is an array of pointers to(long int*) integers, which are the storage
locations for the indexes.

Client Library Reference Manual 11 Runtime Support for Wrapped Procedures CL-65

C
L

DPSMapNames is normally called automatically from within wraps. The
application can also call this procedure directly to obtain name mappings.
DPSMapNames calls the context’s error procedure with
dps_err_nameTooLong.

Note that the caller must ensure that the string pointers remain valid after the
procedure returns. The Client Library becomes the owner of all strings passed to
it with DPSMapNames .

The same name can be used several times in a wrap. To reduce string storage,
duplicates can be eliminated by using an optimization recognized by
DPSMapNames . If the pointer to the string in the arraynames is null, that is
(char *)0, DPSMapNames uses the nearest non null name that precedes the
(char *)0 entry in the array. The first element ofnames must be non null. This
optimization works best if you sort the names so that duplicate occurrences are
adjacent.

For example,DPSMapNames treats the following arrays as equivalent, but the
one on the right saves storage.

{ {

"boxes", "boxes",

"drawMe", "drawMe",

"drawMe", (char *)0,

"init", "init",

"makeAPath", "makeAPath",

"returnAClip", "returnAClip",

"returnAClip", (char *)0,

"returnAClip" (char *)0

} }

DPSNameFromIndex char *DPSNameFromIndex(index)

long int index;

DPSNameFromIndex returns the text for the user name with the given index.
The string returned must be treated as read-only.NULL is returned ifindex is
invalid.

DPSSetContext void DPSSetContext(ctxt)

DPSContext ctxt;

DPSSetContext sets the current context. CallDPSSetContext before calling
any procedures defined inpsops.h.

CL-66 Client Library Reference Manual 15 April 1993

DPSSetResultTable void DPSSetResultTable(ctxt, tbl, len)

DPSContext ctxt;

DPSResults tbl;

unsigned int len;

DPSSetResultTable sets the result table and its length inctxt. This operation
must be performed before a wrap body that can return a value is sent to the
interpreter.

DPSUpdateNameMap void DPSUpdateNameMap(ctxt)

DPSContext ctxt;

DPSUpdateNameMap sends a series ofdefineusername commands to the
interpreter. This procedure is called if the name map of the context’s space is not
synchronized with the Client Library name map.

DPSWriteStringChars void DPSWriteStringChars(ctxt, buf, count);

DPSContext ctxt;

char *buf;

unsigned int count;

DPSWriteStringChars appends strings to the current binary object sequence.
buf containscount characters that form the body of one or more strings in a
binary object sequence.buf and its contents must remain valid until the entire
binary object sequence has been sent.

DPSWriteTypedObjectArray void DPSWriteTypedObjectArray(ctxt, type, array, length)

DPSContext ctxt;

DPSDefinedType type;

char *array;

unsigned int length;

DPSWriteTypedObjectArray writes PostScript language code as specified by the
format and encoding variables ofctxt, doing appropriate conversions as needed.
array points to an array oflength elements of typetype. array contains the
element values for the body of a subsidiary array that was passed as an input
argument topswrap. array and its contents must remain valid until the entire
binary object sequence has been sent.

CL-67

C
L

Example Error Handler

An error handler must deal with all errors defined indpsclient.h as well as any
additional errors defined in system-specific header files.

A.1 Error Handler Implementation

An example implementation of an error handler,DPSDefaultErrorProc ,
follows. The code is followed by explanatory text.

Example A.1 Error handler implementation

#include "dpsclient.h"

void DPSDefaultErrorProc(ctxt, errorCode, arg1, arg2)

DPSContext ctxt;

DPSErrorCode errorCode;

long unsigned int arg1, arg2;

DPSTextProc textProc = DPSGetCurrentTextBackstop();

char *prefix = *%%[Error: ";

char *suffix = "]%%\n";

char *infix = "; OffendingCommand: ";

char *nameinfix = "User name too long; Name: ";

char *contextinfix = "Invalid context: ";

char *taginfix = "Unexpected wrap result tag: ";

char *typeinfix = "Unexpected wrap result type; tag: ";

switch (errorCode) {

case dps_err_ps: {

char *buf = (char *)arg1;

DPSBinObj ary = (DPSBinObj) (buf+DPS_HEADER_SIZE);

DPSBinObj elements;

char *error, *errorName;

integer errorCount, errorNameCount;

boolean resyncFlg;

Assert((ary->attributedType & 0x7f) == DPS_ARRAY);

Assert(ary->Iength == 4);

Appendix A

CL-68 Client Library Reference Manual 15 April 1993

elements = (DPSBinObj)(((char *) ary) +

ary->val.arrayVal);

errorName = (char *)(((char *) ary) +

elements[1].val.nameVal);

errorNameCount = elements[1].length;

error = (char *)(((char *) ary) +

elements[2].val.nameVal);

errorCount = elements[2].Iength;

resyncFlg = elements[3].val.booleanVal;

if (textProc != NIL) {

(*textProc)(ctxt, prefix, strlen(prefix));

(*textProc)(ctxt, errorName, errorNameCount);

(*textProc)(ctxt, infix, strlen(infix));

(*textProc)(ctxt, error, errorCount);

(*textProc)(ctxt, suffix, strlen(suffix));

}

if (resyncFlg && (ctxt != dummyCtx)) {

RAISE(dps_err_ps, ctxt);

CantHappen();

}

break;

}

case dps_err_nameTooLong:

if (textProc != NIL) {

char *buf = (char *)arg1;

(*textProc)(ctxt, prefix, strlen(prefix));

(*textProc)(ctxt, nameinfix, strlen(nameinfix));

(*textProc)(ctxt, buf, arg2);

(*textProc)(ctxt, suffix, strlen(suffix));

}

break;

case dps_err_invalidContext:

if (textProc != NIL) {

char m[100];

(void) sprintf(m, "%s%s%d%s", prefix,

contextinfix, arg1, suffix);

(*textProc)(ctxt, m, strlen(m));

}

break;

case dps_err_resuItTagCheck:

case dps_err_resultTypeCheck:

if (textProc != NIL) {

char m[100];

unsigned char tag = *((unsigned char *) arg1 +1);

(void) sprintf(m, "%s%s%d%s", prefix, typeinfix, tag,

suffix);

(*textProc)(ctxt, m, strlen(m));

}

break;

A. Example Error Handler CL-69

C
L

case dps_err_invalidAccess:

if (textProc != NIL) {

char m[100];

(void) sprintf (m, "%sInvalid context access.%s",

prefix, suffix);

(*textProc) (ctxt, m, strlen (m));

}

break;

case dps_err_encodingCheck:

if (textProc != NIL) {

char m[100];

(void) sprintf (m,

"%sInvalid name/program encoding: %d/%d.%s",

prefix, (int) arg1, (int) arg2, suffix);

(*textProc) (ctxt, m, strlen (m));

}

break;

case dps_err_closedDisplay:

if (textProc != NIL) {

char m[100];

(void) sprintf (m,

"%sBroken display connection %d.%s",

prefix, (int) arg1, suffix);

(*textProc) (ctxt, m, strlen (m));

}

break;

case dps_err_deadContext:

if (textProc != NIL) {

char m[100];

(void) sprintf (m, "%sDead context 0x0%x.%s", pref ix,

(int) arg1, suffix);

(*textProc) (ctxt, m, strlen (m));

}

break;

default:;

}

} /* DPSDefaultErrorProc */

A.2 Description of the Error Handler

DPSDefaultErrorProc handles errors that arise when a wrap or Client Library
procedure is called for the context. The error code indicates which error occurred.
Interpretation of thearg1 andarg2 values is based on the error code.

The error handler initializes itself by getting the current backstop text handler and
assigning string constants that will be used to formulate and report a text
message. The section of the program that deals with the various error codes
begins with the switch statement. Each error code can be handled differently.

CL-70 Client Library Reference Manual 15 April 1993

If a textProc was specified, the error handler calls the text handler to formulate an
error message, passing it the name of the error, the objectthat caused the error,
and the string constants used to format a standard error message. For example, a
typecheck error reported by thecvn operator is reported as adps_err_ps error
code and printed as follows:

%%[Error: typecheck; OffendingCommand: cvn]%%

The following error codes are common to all Client Library implementations:

A.3 Handling PostScript Language Errors

The following discussion applies only to thedps_err_ps error code. This error
code represents all possible PostScript operator errors. Because the interpreter
provides a binary object sequence containing detailed information about the
error, more options are available to the error handler than for other client errors.

arg1 points to a binary object sequence that describes the error. The binary object
sequence is a four-element array consisting of the nameError, the name that
identifies the specific error, the object that wasexecuted when the error occurred,
and a Boolean indicating whether the context expects to be resynchronized.

dps_err_ps represents all PostScript language errors
reported by the interpreter, that is, the errors
listed under each operator inPostScript
Language Reference Manual, Second Edition.

dps_err_nameTooLong arises if a binary object sequence or encoded
token has a name whose length exceeds 128
characters.arg1 is the PostScript user name;
arg2 is its length.

dps_err_invalidcontext arises if a Client Library routine was called with
an invalid context. This can happen if the client
is unaware that the execution context in the
interpreter has terminated.arg1 is a context
identifier;arg2 is unused.

dps_err_resultTagCheck occurs when an invalid tag is received for a
result value. There is one object in the
sequence.arg1 is a pointer to the binary object
sequence;arg2 is the length of the binary object
sequence.

dps_err_resultTypeCheck occurs when the value returned is of a type
incompatible with the output parameter (for
example, a string returned to an integer output
parameter).arg1 is a pointer to the binary
object (the result with the wrong type);arg2 is
unused.

A. Example Error Handler CL-71

C
L

The type and length of the array are checked with assertions. The body of the
array is pointed to by theelements variable. Each element of the array is
extracted and placed in a variable.

Section B.1, “Recovering from PostScript Language Errors,” describes a strategy
for recovering from PostScript language errors. The strategy uses the
resynchstart operator and theresynchandleerror handler.
DPSDefaultErrorProc raises an exception only if the context uses this
resynchronization method. TheresyncFlag variable contains the value of the
fourth element of the binary object sequence array, the Boolean that indicates
whether resynchronization is needed.resyncFlag will be false if handleerror
handled the error. It will betrue if resynchandleerror handled the error.

If resyncFlag is true and the context handling the error is a contextcreated by the
application, the error handler raises the exception by callingRAISE. This call
never returns.

CL-72 Client Library Reference Manual 15 April 1993

CL-73

C
L

Appendix B

Exception Handling

This appendix describes a general-purpose exception-handling facility. It
provides help for a narrowly defined problem area handling PostScript language
errors. Most application programmers need not be concerned with exception
handling. These facilities can be used in conjunction with PostScript language
code and a sophisticated error handler such asDPSDefaultErrorProc to provide
a certain amount of error recovery capability. Consult the system-specific
documentation for alternative means of error recovery.

Note: Certain systems may restrict the use of this exception-handling facility. The X
Window System implementation, for example, limits exception handling to a few
narrowly defined situations. Consult the system-specific documentation for more
information.

An exception is an unexpected condition such as a PostScript language error that
prevents a procedure from running to normal completion. The procedure could
simply return when an exception occurs, but this technique might leave data
structures in an inconsistent state and produce incorrect returned values.

Instead of returning, the procedure can raise the exception, passing a code that
indicates what has happened. The exception is intercepted by some caller of the
procedure that raised the exception (any number of procedure calls deep);
execution then resumes at the point of interception. As a result, the procedure that
raised the exception is terminated, as are any intervening procedures between it
and the procedure that intercepted the exception, an action called “unwinding the
call stack.”

The Client Library provides a general-purpose exception-handling mechanism in
dpsexcept.h. This header file provides facilities for placing exception handlers in
application subroutines to respond cleanly to exceptional conditions.

Note: Application programs might need to contain the following statement:

#include "dpsexcept.h"

As an exception propagates up the call stack, each procedure encountered can
deal with the exception in one of three ways:

CL-74 Client Library Reference Manual 15 April 1993

• It ignores the exception, in which case the exception continues on to the caller
of the procedure.

• It intercepts the exception and handles it, in which case all procedure calls
below the handler are unwound and discarded.

• It intercepts, handles, and then raises the exception, allowing handlers higher
in the stack to notice and react to the exception.

The body of a procedure that intercepts exceptions is written as follows:

DURING

statement1;

statement2;

 ...

HANDLER

statement3

statement4;

 ...

END_HANDLER

The statements betweenHANDLER andEND_HANDLER make up the
exception handler for exceptions occurring betweenDURING andHANDLER.
The procedure body works as follows:

• Normally, the statements betweenDURING andHANDLER are executed.

• If no exception occurs, the statements betweenHANDLER and
END_HANDLER are bypassed; execution resumes at the statement after
END_HANDLER.

• If an exception is raised while executing the statements betweenDURING and
HANDLER (including any procedure called from those statements), execution
of those statements is aborted and control passes to the statements between
HANDLER andEND_HANDLER.

In terms of C syntax, treat these macros as if they were C code brackets, as shown
in Table B.1.

Table B.1 C equivalents for exception macros

Macro C Equivalent

DURING {{

HANDLER }{

END_HANDLER }}

B. Exception Handling CL-75

C
L

In general, exception-handling macros either should entirely enclose a code block
(the preferred method, Example B.1) or should be entirely within the block
(Example B.2).

Example B.1 Exception handling macros—enclosing a code block

DURING

while (/* Example 1 */) {

...

}

HANDLER

...

END_HANDLER

Example B.2 Exception handling macros—within a code block

while (/* Example 2 */) {

DURING

...

HANDLER

...

END_HANDLER

}

When a procedure detects an exceptional condition, it can raise an exception by
callingRAISE. RAISE takes two arguments. The first is an error code (for
example, one of the values ofDPSErrorCode). The second is a pointer,char *,
which can point to any kind of data structure, such as a string of ASCII text or a
binary object sequence.

The exception handler has two local variables:Exception.Code and
Exception.Message. When the handler is entered, the first argument that was
passed toRAISE gets assigned toException.Code and the secondargument gets
assigned toException.Message. These variables have valid contents only
betweenHANDLER andEND_HANDLER.

If the exception handler executesEND_HANDLER or returns, propagation of the
exception ceases. However, if the exception handler callsRERAISE, the
exception, along withException.Code andException.Message, is propagated
to the next outer dynamically enclosing occurrence ofDURING...HANDLER.

A procedure can choose not to handle an exception, in which case one of its
callers must handle it. There are two common reasons for wanting to handle
exceptions:

• To deallocate dynamically allocated storage and clean up any other local state,
then allow the exception to propagate further. In this case, the handler should
perform its cleanup, then callRERAISE.

CL-76 Client Library Reference Manual 15 April 1993

• To recover from certain exceptions that might occur, then continue normal
execution. In this case, the handler should compareException.Code with the
set of exceptions it can handle. If it can handle the exception, it should
perform the recovery and execute the statement that follows
END_HANDLER; if not, it should callRERAISE to propagate the exception
to a higher-level handler.

Note: It is illegal to execute a statement betweenDURING andHANDLER that would
transfer control outside of those statements. In particular, return is illegal: an
unspecified error will occur. This restriction does not apply to the statements
betweenHANDLER andEND_HANDLER. To return from the exception handler,
call E_RETURN_VOID; to perform return(x), callE_RETURN(x).

B.1 Recovering from PostScript Language Errors

The exampleDPSDefaultErrorProc procedure can be used with the PostScript
operatorresyncstart to recover from PostScript language errors. If you use this
strategy, an exception can be raised by any of the Client Library procedures that
write code or data to the context: any wrap, any single-operator procedure,
DPSWritePostScript , and so on. The strategy is as follows:

1. Sendresyncstart to the context immediately after it is created.resyncstart
is a simple, read-evaluate-print loop enclosed in astopped clause which, on
error, executesresynchandleerror .

resynchandleerror reports PostScript errors back to the client in the form of
a binary object sequence of a single object: an array of four elements as
described in section3.12.2 of PostScript LanguageReference Manual, Second
Edition. The fourth element of the binary object sequence, a Boolean, is set to
true to indicate thatresynchandleerror is executing. Thestopped clause
itself executes within an outer loop.

2. When a PostScript language error is detected,resynchandleerror writes the
binary object sequence describing the error, flushes the output stream
%stdout, then reads and discards any data on the input stream%stdin until
EOF (an end-of-file marker) is received. This effectively clears out any
pending code and data, and makes the context do nothing until the client
handles the error.

3. The binary object sequence sent byresynchandleerror is received by the
client and passed to the context’s error handler. The error handler formulates a
text message from the binary object sequence and displays it, for example, by
calling the backstop text handler.

It then inspects the binary object sequence and notices that the fourth element
of the array, a Boolean, istrue. This meansresynchandleerror is executing
and waiting for the client to recover from the error. The error handler can then
raise an exception by callingRAISE with dps_err_ps and theDPSContext
pointer in order to allow an exception handler to perform error recovery.

B. Exception Handling CL-77

C
L

4. Thedps_err_ps exception is caught by one of the handlers in the application
program. This causes the C stack to be unwound, and the handler body to be
executed. To handle the exception, the application can reset the context that
reported the error, discarding any waiting code.

5. The handler body callsDPSResetContext , which resets the context after an
error occurs. This procedure guarantees that any buffered I/O is discarded and
that the context is ready to read and execute more input. Specifically,
DPSResetContext causesEOF to be put on the context’s input stream.

6. We have come full circle now.EOF is received byresynchandleerror ,
which causes it to terminate. The outer loop ofresyncstart then reopens the
context’s input stream%stdin, which clears the end-of-file indication and
resumes execution at the top of the loop. The context is now ready to read new
code.

Although this strategy works well for some applications, it leaves the context and
the contents of its private VM in an unknown state. For example, the dictionary
and operand stacks might be cluttered, free-running forked contexts might have
been created, or the contents ofuserdict might have been changed. Clearing the
state of such a context can be very complicated.

You might not get PostScript language error exceptions when you expect them.
Because of delays related to buffering and scheduling, a PostScript language
error can be reported long after the C procedure responsible for the error has
returned. This makes it difficult to write an exception handler for a given section
of code. If this code can cause a PostScript language error and therefore cause
DPSDefaultErrorProc to raise an exception, you can ensure that you get the
exception in a timely manner by using synchronization.

Note: In multicontext applications that require error recovery, the code to recover from
PostScript errors can get complicated. An exception reporting a PostScript error
caused by one context can be raised by any call on the Client Library, even one
on behalf of some other context, including calls made from wraps. Although
DPSDefaultErrorProc passes the context that caused the error as an argument
to RAISE, it is difficult in general to deal with an exception from one context that
arises while the application is working with another.

When thehandleerror procedure is called to report an error, no recovery is
possible except to display an error message and destroy the context.

B.2 Example Exception Handler

A typical application might have the following main loop. Assume that a context
has already been created withDPSDefaultErrorProc as its error procedure, and
thatresyncstart has been executed by the context.

CL-78 Client Library Reference Manual 15 April 1993

Example B.1 Exception handler

C language code:

#include <dpsexcept.h>

while (/* the user hasn’t quit */) {

/* get an input event */

event = GetEventFromQueue ();
/* react to event */

DURING

 switch (event) {

 case EVENT_A:

 UserWrapA(context, ...);

 break;

 case EVENT_B:

 UserWrapB(context, ...);

 break;

 case EVENT_C:

 ProcThatCallsSeveralWraps(context);

 break;

/* ... */

default:;

}

HANDLER

/* the context’s error proc has already posted an

error for this exception, so just reset.

Make sure the context we’re using is the

one that caused the error! */

if (Exception.Code == dps_err_ps)

DPSResetContext((DPSContext)Exception.Message);

END_HANDLER

}

Most of the calls in theswitch statement are either direct calls to wrapped
procedures or indirect calls (that is, calls to procedures that make direct calls to
wrapped procedures or to the Client Library). All of the procedure calls between
DURING andHANDLER can potentially raise an exception. The code between
HANDLER andEND_HANDLER is executed only if an exception is raised by
the code betweenDURING andHANDLER. Otherwise, the handler code is
skipped.

Suppose ProcThatCallsSeveralWraps is defined as follows:

Example B.2 Propagating exceptions withRERAISE

void ProcThatCallsSeveralWraps(context)

DPSContext context;

{

char *s = ProcThatAllocsAString (...);

int n;

B. Exception Handling CL-79

C
L

DURING

UserWrapC1 (context, ...);

UserWrapC2(context, &n); /* user wrap returns value */

/* client lib proc */

DPSPrintf(context, "/%s %d def\n", s, n);

HANDLER

if ((DPSContext)Exception.Message == context)

{

/* clean up the allocated string */

free(s);

s = NULL;

}

/* let the caller handle resetting the context */

RERAISE;

END_HANDLER

/* clean up, if we haven’t already */

if (s != NULL) free(s);

}

This procedure unconditionally allocates storage, then calls procedures that
might raise an exception. If no handlers are here and the exception is propagated
to the main loop, the storage allocated for the string would never be reclaimed.
The solution is to define a handler that frees the storage and then callsRERAISE
to allow another handler to do the final processing of the exception.

CL-80 Client Library Reference Manual 15 April 1993

