
Adobe Systems Incorporated

Display PostScript System

Client Library Supplement for X

15 April 1993

Adobe Systems Incorporated

Adobe Developer Technologies
345 Park Avenue
San Jose, CA 95110
http://partners.adobe.com/

Copyright 1988-1993 by Adobe Systems Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of the publisher. Any software referred to herein is furnished under license and may
only be used or copied in accordance with the terms of such license.

PostScript, the PostScript logo, Display PostScript, and the Adobe logo are trademarks of Adobe
Systems Incorporated which may be registered in certain jurisdictions. X Window System is a
trademark of the Massachusetts Institute of Technology. *Helvetica is a trademark of Linotype-Hell
AG and/or its subsidiaries. Other brand or product names are the trademarks or registered trademarks
of their respective holders.

This publication and the information herein is furnished AS IS, is subject to change without notice, and
should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems
Incorporated assumes no responsibility or liability for any errors or inaccuracies, makes no warranty
of any kind (express, implied or statutory) with respect to this publication, and expressly disclaims any
and all warranties of merchantability, fitness for particular purposes and noninfringement of third
party rights.

CLX-iii

Contents

1 About this Manual CLX-1
What this Manual Contains CLX-1

2 About the Display PostScript Extension to X CLX-2

3 Basic Facilities CLX-3
Initialization CLX-3
Creating a Context CLX-3
Execution CLX-9
Status Events CLX-20

4 Additional Facilities CLX-26
Identifiers CLX-26
Zombie Contexts CLX-27
Buffers CLX-27
Encodings CLX-27
Forked Contexts CLX-29
Multiple Servers CLX-30
Sharing Resources CLX-30
Synchronization CLX-31

5 Programming Tips CLX-34
Avoid XIfEvent CLX-34
Include Files CLX-34
Use Pass-Through Event Dispatching CLX-34
Be Careful With Exception Handling CLX-35
Coordinate Conversions CLX-35
Fonts CLX-37
Portability Issues CLX-37
Using Custom Operators CLX-39
Changing Fields in Graphics Contexts CLX-41

6 X-Specific Data and Procedures CLX-42
Data Structures CLX-42
Procedures CLX-44

7 X-Specific Custom PostScript Operators CLX-55
Single-Operator Procedures CLX-58

Index
See Global Index to the Display PostScript Reference Manuals

CLX-iv Contents

CLX-v

C
L

X

List of Figures

Figure 1 User space and device space CLX-9
Figure 2 Window origin and device space origin CLX-11

CLX-vi List of Figures

CLX-vii

C
L

X

List of Tables

Table 1 How bit gravity affects offsets CLX-15
Table 2 Encoding conversions CLX-28
Table 3 Status events CLX-43
Table 4 Description of colorinfo array values CLX-56

CLX-viii List of Tables

CLX-ix

C
L

X

List of Examples

Example 1 Implementing a user interface to display icons CLX-17
Example 2 Debugging by forcing synchronization CLX-19
Example 3 Constructing masks CLX-22
Example 4 Calling XtDispatchEvent CLX-24
Example 5 Getting CTM, inverse CTM, and current origin offset CLX-35
Example 6 Calling PSWGetTransform CLX-36
Example 7 Converting an X coordinate to user space CLX-36
Example 8 Converting a user space coordinate to an X coordinate CLX-37
Example 9 Resetting clipping path, transfer function, and CTM CLX-39
Example 10 Retaining previous values of clipping path, transfer function, and CTM CLX-40
Example 11 Resetting clipping path and transfer function while keeping CTM CLX-40
Example 12 Defining XFlushGC CLX-41
Example 13 Form of colorinfo array CLX-56
Example 14 Procedure declarations for X-specific PostScript operators CLX-58

CLX-x List of Examples

CLX-83

C
L

X

Client Library
Supplement for X

1 About this Manual

Client Library Supplement for X contains information about the Client Library
interface to the Display PostScript system implemented as an extension to the X
Window System. The Display PostScript extension is the application
programmer’s means of displaying text and graphics on a screen using the
PostScript language.

The system-independent interface for Display PostScript is documented inClient
Library Reference Manual. Only extensions to the interface are discussed in
Client Library Supplement for X. The header file<DPS/dpsXclient.h> includes
both system-independent and X system-specific procedures.

1.1 What this Manual Contains

Section 2, “About the Display PostScript Extension to X,” briefly introduces the
Display PostScript system extension to the X Window System.

Section 3, “Basic Facilities,” introduces concepts that will enable you to write a
simple application, including connecting to the X server; creating and
terminating a context; differences in coordinate systems; issues of rendering in X
versus PostScript language; clipping, repainting, and resizing; error codes; user
object indices; and status events.

Section 4, “Additional Facilities,” describes advanced concepts that not all
applications need, including client and server identifiers, encodings,
synchronization, shared resources, and multiple servers.

Section 5, “Programming Tips,” contains tips for the application programmer on
files, fonts, coordinate conversions, and other issues that require special attention.

Section 6, “X-Specific Data and Procedures,” describes the X-specific data and
procedures found in the<DPS/dpsXclient.h> header file.

Section 7, “X-Specific Custom PostScript Operators,” describes the X-specific
PostScript operators provided for the Display PostScript extension to X.

CLX-84 Client Library Supplement for X 15 April 1993

2 About the Display PostScript Extension to X

In order to understand the relationship of the Display PostScript system to the
development of X applications, you should be familiar with the following
concepts:

• The PostScript imaging model, which allows the application developer to
express graphical displays at a higher level of abstraction than is possible with
Xlib. This improves device independence and portability. The integration of
the imaging model with X requires consideration of several issues, including
coordinate system conversions (see “Coordinate Systems” in 3.3,
“Execution”), event handling (see 3.4, “Status Events”), and resource
management (see 4.7, “Sharing Resources”).

• The PostScript interpreter, which allows an application to execute PostScript
language code.

• Wrapped procedures, which allow PostScript language programs to be
embedded in an application as C-callable procedures.

Client Library Supplement for X 3 Basic Facilities CLX- 85

C
L

X

3 Basic Facilities

Client Library Reference Manual introduces the facilities needed to write a
simple application program for the Display PostScript system. This manual
discusses Display PostScript system issues of particular concern in the X
Window System environment, in the following categories:

• Initialization

• Creating a context

• Execution of PostScript language code

• Termination

3.1 Initialization

Before performing any Display PostScript operations, the application must
establish a connection to the X server. You can connect to the server by using
Xlib’s XOpenDisplay routine or a standard toolkit’s initialization process.
Regardless of how the connection is established, an XDisplay record will be
defined for the connection. Subsequent Display PostScript system operations will
use thisDisplay record to identify the server. Once theDisplay record is
obtained, the application must create adrawable (window or pixmap) for
Display PostScript imaging operations, and an XGC out of which certain fields
are used by Display PostScript. There are a number of facilities in Xlib for
creating new windows andGCs, such asXCreateSimpleWindow and
XCreateGC .

3.2 Creating a Context

In Display PostScript, a context (as described inClient Library Reference
Manual) is a resource in the server that represents all of the execution state
needed by the PostScript interpreter to run PostScript language programs.

DPSContextRec is a data structure on the client side that represents all of the
state needed by the Client Library to communicate with a context. A pointer of
typeDPSContext is a handle to this data structure. When the application creates
a context in the interpreter, aDPSContextRec structure is automatically created
for use by the client (except for forked contexts; see 4.5, “Forked Contexts”). The
DPSContextRec contains pointers to procedures that implement all of the basic
operations that a context can perform.

There are two procedures that create both a context in the server and a
DPSContextRec for the client. The first,XDPSCreateSimpleContext , uses the
default colormap, and is adequate for most applications. The second,
XDPSCreateContext , is a more general function that allows you to specify

CLX-86 Client Library Supplement for X 15 April 1993

colormap information. Other procedures for creating just theDPSContextRec—
for contexts that already exist in the server—are covered in 4, “Additional
Facilities.”

3.2.1 Using XDPSCreateSimpleContext

To create a context using the default colormap, call
XDPSCreateSimpleContext :

XDPSCreateSimpleContext DPSContext XDPSCreateSimpleContext(dpy, drawable, gc, x, y,

textProc, errorProc, space)

Display *dpy;

Drawable drawable;

GC gc;

int x;

int y;

DPSTextProc textProc;

DPSErrorProc errorProc;

DPSSpace space;

Client Library Reference Manual contains a general discussion of
XDPSCreateSimpleContext , but does not discuss the details that are relevant
to X. These details are covered here.

A context is created on the specifiedDisplay and is associated with aDrawable
andGC on thatDisplay. The context uses the following fields in theGC to render
text and graphics on theDrawable:

• plane_mask

• subwindow_mode

• clip_x_origin

• clip_y_origin

• clip_mask

If the Drawable or GC is not specified (that is, passed asNone), the context will
execute programs correctly but will not render any text or graphics (it renders to
the null device). A validDrawable andGC may be associated with such a
context at a later time using thesetXgcdrawable operator, documented in 7,
“X-Specific Custom PostScript Operators.”

Client Library Supplement for X 3 Basic Facilities CLX- 87

C
L

X

The argumentsx andy are offsets that specify where the device space origin is
relative to the window origin. To place the device space origin (and thus the user
space origin) in the standard lower-left corner, pass zero forx and the height of
the window in pixels fory. See the discussion of coordinate systems in 3.3,
“Execution.”

The other arguments toXDPSCreateSimpleContext are described fully in
Client Library Reference Manual. To summarize:textProc is a callback
procedure that handles text output from the context,errorProc is a callback
procedure that handles errors reported by the context, andspace is the private
VM that the context uses for storage. If the space is passed asNULL, a new space
is created.

If all of the arguments are valid and the context is successfully created in the
server, aDPSContext handle is returned. Otherwise,NULL is returned.

XDPSCreateSimpleContext uses the default colormap. A device-specific
number of grays is reserved in the default colormap, which represents a gray
ramp. If the device supports color, an RGB color cube is also reserved. If a
requested RGB color is found in the color cube or gray ramp, the associated pixel
value is used. Otherwise, the color is approximated by dithering pixel values
from the colormap to give the best possible rendering of the color.

XDPSCreateSimpleContext may allocate a substantial number of cells in the
default colormap. For example, a typical allocation for an 8-plane PseudoColor
device is 64 cells for the color cube, representing a 4x4x4 RGB cube. The gray
ramp typically uses nine cells.XDPSCreateSimpleContext checks the root
window for theRGB_DEFAULT_MAP andRGB_GRAY_RAMP properties. If
the properties exists, the color cells they specify are used for the context’s color
cube and gray ramp. If the properties do not exist, color cells are allocated and
the properties are defined. The allocated cells are typically treated as “read-only
retained” so that other Display PostScript clients may share the allocated colors.

The Display PostScript system uses entries from the default X colormap to
display colors and grey values. You can configure this usage. Giving the Display
PostScript system more colormap entries improves the quality of its rendering,
but leaves fewer entries available to other applications since the default colormap
is shared.

Resources in your.Xdefaults file control the colormap usage. Each resource entry
should be of the form

DPSColorCube.visualType.depth.color: size

where

visualType is one ofGrayScale, PseudoColor, or DirectColor.

CLX-88 Client Library Supplement for X 15 April 1993

depth is 1, 2, 4, 8, 12, or 24 and should be the largest depth equal to or less
than the default depth.

color is one of the strings “reds”, “greens”, “blues”, or “grays”.

size is the number of values of that color to allocate .

These resources are not used for the static visual typesStaticGray, StaticColor,
or TrueColor.

Specifying 0 for reds directs the Client Library to use only a gray ramp. This
specification is particularly useful for gray-scale systems that incorrectly use
PseudoColor as the default visual.

For example, to configure a 5x5x4 color cube and a 17-element gray ramp for an
8-bit PseudoColor screen, specify these resources:

DPSColorCube.PseudoColor.8.reds: 5
DPSColorCube.PseudoColor.8.greens: 5
DPSColorCube.PseudoColor.8.blues: 4
DPSColorCube.PseudoColor.8.grays: 17

These resources use 117 colormap entries, 100 for the color cube and 17 for the
gray ramp. For the best rendering results, specify an odd number for the gray
ramp.

Resources that are not specified take these default values:

DPSColorCube.GrayScale.4.grays: 9
DPSColorCube.GrayScale.8.grays: 17

DPSColorCube.PseudoColor.4.reds: 2
DPSColorCube.PseudoColor.4.greens: 2
DPSColorCube.PseudoColor.4.blues: 2
DPSColorCube.PseudoColor.4.grays: 2
DPSColorCube.PseudoColor.8.reds: 4
DPSColorCube.PseudoColor.8.greens: 4
DPSColorCube.PseudoColor.8.blues: 4
DPSColorCube.PseudoColor.8.grays: 9
DPSColorCube.PseudoColor.12.reds: 6
DPSColorCube.PseudoColor.12.greens: 6
DPSColorCube.PseudoColor.12.blues: 5
DPSColorCube.PseudoColor.12.grays: 17

DPSColorCube.DirectColor.12.reds: 6
DPSColorCube.DirectColor.12.greens: 6
DPSColorCube.DirectColor.12.blues: 6
DPSColorCube.DirectColor.12.grays: 6
DPSColorCube.DirectColor.24.reds: 7

Client Library Supplement for X 3 Basic Facilities CLX- 89

C
L

X

DPSColorCube.DirectColor.24.greens: 7
DPSColorCube.DirectColor.24.blues: 7
DPSColorCube.DirectColor.24.grays: 7

If none of the above defaults apply to the display, the Client Library uses no color
cube and a 2-element gray ramp; that is, black and white.

The advantage of using the color allocation facilities provided by
XDPSCreateSimpleContext is that the application has available a wide range
of colors (many more than the number of cells), each with a reasonable
rendering, without having to provide for the possibility that colormap allocations
may fail. The disadvantage is that a large number of color cells may be allocated
from the default colormap.

3.2.2 Using XDPSCreateContext

To create a context with specific color information, callXDPSCreateContext :

XDPSCreateContext DPSContext XDPSCreateContext(dpy, drawable, gc, x, y,

eventmask, grayramp, ccube, actual,

textProc, errorProc, space)

Display *dpy;

Drawable drawable;

GC gc;

int x;

int y;

unsigned int eventmask;

XStandardColormap *grayramp;

XStandardColormap *ccube;

int actual;

DPSTextProc textProc;

DPSErrorProc errorProc;

DPSSpace space;

Thedpy, drawable, gc, x, y, textProc, errorProc, andspace arguments for
XDPSCreateContext are the same as forXDPSCreateSimpleContext . The
eventmask is currently not implemented and should be passed as zero.

Thegrayramp andccube arguments are pointers toXStandardColormap data
structures (defined in the<X11/Xutil.h> header file). AnXStandardColormap
specifies a colormap, a base pixel value, and multipliers and limits for red (or
gray), green, and blue ramps. A valid gray ramp is required;ccube is optional
(may be passed asNULL). If a color cube is present and is specified byccube,
grayramp may use pixel values in the color cube in order to conserve colormap
entries. The X colormap resource specified in theccube andgrayramp
arguments must be identical. The application must ensure that the specified
colormap is installed—for example, by usingXSetWindowColormap to set the
colormap as an attribute of the window.

CLX-90 Client Library Supplement for X 15 April 1993

The application provides a colormap with a uniform distribution of colors. The
colormap must provide a uniform distribution of grays (colors where red, green,
and blue are equal in intensity), which is described bygrayramp. However, the
grayramp may be as simple as two levels: black and white. The colormap may
also contain a uniform distribution of RGB colors arranged as a color cube,
which is described byccube. See X Window System reference documents for
details about theXStandardColormap data structure.

The argumentactual can be used to conserve colormap entries as well as to
display pure (nondithered) colors. If the application has been informed which
colors it will use, or if the number of colors to be used is relatively few (fewer
than the default allocation thatXDPSCreateSimpleContext would use for the
device), theactual argument can be used.actual is a hint about the number of
colors the context is going to request. It is considered a hint because the server
cannot guarantee that the specified number of colors will be available. The server
will reserve the number of cells specified byactual or the number of cells
available in the specified colormap, whichever is smaller. As the context makes
color requests, colormap entries are defined on a “first come, first served” basis.
For example, supposeactual is given the value 3 and there are at least three cells
available. The first time the context executes thesetrgbcolor operator, the
requested color will be stored in the colormap, leaving two more cells reserved
by actual. When the context executessetrgbcolor for a different color, the
second cell reserved byactual is used, and so on. The colors requested by the
PostScript language program executed by the context will be rendered without
dithering.

Note: Supportingactual is an optional part of a Display PostScript system. Some
implementations ignoreactual, so portable applications should not count on its
effects.

Consider the characteristics of your application when deciding whether to use
XDPSCreateSimpleContext , with its default allocation of colors, or
XDPSCreateContext , with actual. An application may allow the end user to
define a variety of colors. Such an application—a graphics editor, for example—
could useXDPSCreateSimpleContext .

On the other hand, an application that uses only a few colors—the foreground
and background colors of a performance meter, for example—could use
XDPSCreateContext , specify a small color cube, and setactual to the number
of colors used. Sinceactual is just a hint, the small cube is necessary as a fallback
strategy; it ensures that the application will display correctly regardless of the
environment.

If all the arguments are valid and the context is successfully created in the server,
a DPSContext handle is returned. Otherwise,NULL is returned.

Client Library Supplement for X 3 Basic Facilities CLX- 91

C
L

X

3.3 Execution

This section discusses the following Display PostScript issues: coordinate
systems, rendering, clipping, repainting, resizing a window, user object indices,
and errors.

3.3.1 Coordinate Systems

The application must specify user space coordinates when communicating with
the PostScript interpreter and X coordinates when communicating with other
parts of the X Window System. Therefore coordinate conversions may be
necessary. This section explains:

• How to specify the device space origin for the window at context creation
time

• How to convert user space coordinates to X coordinates

• How to convert X coordinates to user space coordinates

PostScript Language Reference Manual, Second Edition, describes the
coordinate system used by the PostScript imaging model. To summarize:
coordinates are specified in a user-defined space and are automatically converted
to the output device space. The default user space unit is 1/72 of an inch. The
default origin is in the lower left corner of the page, withx increasing to the right
andy increasing to the top (upwards).

Figure 1 shows a linear transformation from user space to device space by means
of the current transformation matrix (CTM). Note that this transformation is
one-way only.

Figure 1 User space and device space

y

User space
y increases upward

Device space
y increases downward

origin

CTM

x

CLX-92 Client Library Supplement for X 15 April 1993

In PostScript language terminology, the window is the output device. In Display
PostScript, the window is treated as a page, with the conventional location of the
origin in the lower left corner. The device space is equivalent to the X coordinate
system for the window, except for the following:

• The device space origin is offset from the window origin.

• Device space is a real-number space, whereas the X coordinate system is an
integer space.

As described inPostScript Language Reference Manual, Second Edition, pixel
boundaries fall on integer coordinates in device space. A pixel is a half-open
region, meaning that it includes half its boundary points. For any point (x, y) in
device space, leti = floor(x) andj = floor(y), wherex andy are real numbers andi
andj are integers. The pixel that contains this point is the one identified as (i, j),
which is equivalent to the X coordinate for that pixel.

To convert user space coordinates to X coordinates:

1. Convert the user space coordinates to device space coordinates by computing
a linear transformation using the current transformation matrix (CTM).

2. Compute the X coordinates by applying an additional translation to the device
space coordinates derived in Step 1 to account for the offset of the device
space origin from the window origin.

Similarly, to convert X coordinates to user space coordinates:

1. Translate the X coordinates to device space coordinates by applying the offset
of the device space origin to the X coordinates.

2. Convert the device space coordinates to user space coordinates by using the
inverse of the current transformation matrix.

See 5.5, “Coordinate Conversions,” for examples of coordinate conversions.

Figure 2 illustrates how the device space origin is located in the window as an
offset from the window origin. Thex andy offset values are established at
context creation time (see 3.2, “Creating a Context”); they can be changed by
X-specific PostScript operators such assetXoffset .

Client Library Supplement for X 3 Basic Facilities CLX- 93

C
L

X

Figure 2 Window origin and device space origin

The device origin is offset in order to support the method of scrolling that
involves copying areas of the window (as opposed to shifting a child window
under an ancestor). You can put the device space origin anywhere in the window.
Then, as you scroll the contents of the window, you can offset the origin from its
original position to make coordinate conversions easier. The default location for
the device space origin is in the lower left corner of the window.

Coordinate conversions are required under the following conditions:

• If you use the PostScript imaging model to render graphics using coordinates
received from X events, the X coordinates must first be converted into user
space coordinates. For instance, if you allow the user to select a line of text in
a text editor, coordinate conversions are required.

• If X rendering is to be done in the same window as PostScript language
rendering, it may be necessary to convert user space coordinates to X
coordinates—for example, callXCopyArea to move a graphical object that
was rendered by the PostScript interpreter.

Coordinate conversions are not required under the following conditions:

• If you use the PostScript imaging model for output only (rendering text and
graphics without user interaction in the display area), no coordinate
conversions are required. Simply express coordinates in user space.

For example, assuming the default user space, the letterA shown at coordinate
(x=72,y=72) will appear upright 1 inch to the right and 1 inch above the
bottom left corner of the window.

y increasing

x offset

y offset

device space
origin (0,0)

x increasing

X window
origin (0,0)

CLX-94 Client Library Supplement for X 15 April 1993

• If the only rendering you do in response to X events is with X primitives, you
don’t have to perform coordinate conversions unless you are altering pixels
that were rendered by the PostScript interpreter.

Resizing the window may have an effect on the device space origin, and thus the
offsets to that origin, depending upon the bit gravity of the window. See the
section titled “Resizing the Window” on page PG-96.

3.3.2 Mixing Display PostScript and X Rendering

X drawing requests and PostScript language code can be sent to the same
drawable. For example, X primitives such asXCopyArea can be used to move,
copy, and change pixels that have been painted with PostScript language
programs.

Interactive feedback, such as selection highlighting and control points, can be
accomplished with X drawing requests. For example, control points on a graphics
object in a graphics editor application can be displayed with X primitives as
follows:

• Copy the pixels that were painted by a PostScript language program to a
pixmap with severalXCopyArea calls. These pixels will temporarily be
obscured by the control points, so they must be preserved.

• Call XFillRectangle to paint the control points, which may be grabbed and
stretched, rotated, moved, and so on.

Now suppose a control point is moved. Handle a series of subsequent mouse
events as follows:

• Copy the pixels underlying the control point back from the pixmap,
effectively erasing the control point at the original location.

• Compute the new position of the control point from the mouse event.

• Copy the pixels at the new location to the pixmap. CallXFillRectangle to
display the control point at the new location.

Here are some considerations to keep in mind when mixing X and Display
PostScript system imaging:

• Their coordinate systems are different. See the section titled “Coordinate
Systems” on page PG-91 for more information.

• PostScript language programs run asynchronously with respect to other X
requests. A PostScript language rendering request is not guaranteed to be
complete before a subsequent X request is executed, unless synchronized. See
4.8, “Synchronization,” for more information.

Client Library Supplement for X 3 Basic Facilities CLX- 95

C
L

X

• X tends to be pixel and plane oriented; graphic operations that manipulate
pixels and planes are necessarily device dependent. The PostScript imaging
model deals with abstract graphical representations (paths) and abstract
colors. The PostScript interpreter tries to give the best rendering possible for
the device. If device independence is important for your application, use X
primitives sparingly, preserving device independence as much as possible.

3.3.3 Clipping and Repainting

Text and graphics rendered with the PostScript interpreter are subject to all of the
X clipping rules as well as the clipping defined by the PostScript imaging model.

The default clipping region is the window. When clipping other than to the
default, the following recommendations apply:

• If you’re drawing with PostScript language code only, use the clipping
mechanism provided by the PostScript imaging model. This is sufficient for
nearly all applications.

• If you’re also using X primitives and want to clip them as well as draw using
PostScript language code, use the clipping specified by the X GC.

Expose events may be handled with a variety of strategies:

• Repainting all graphics for the window

• Repainting all graphics through composite view clip

• Repainting selected graphics through composite view clip

Repainting the entire window is the simplest strategy to implement and is
suitable for simple applications. To do so:

• Ignore exposure events with counts greater than zero.

• For exposure events with counts equal to zero, clear the window and then
redisplay all of the text and graphics objects by executing the PostScript
language programs that describe them.

Though simple to implement, this strategy makes the window flash or flicker
every time it is repainted, which can be distracting to the end user.

A somewhat more sophisticated strategy involves making a list of the rectangles
specified in a series of exposure events until a zero count is detected, as follows:

• Create a view clip (seePostScript Language Reference Manual, Second
Edition) by converting the coordinates of the list of exposure rectangles to
user space coordinates and executingrectviewclip with this list.

CLX-96 Client Library Supplement for X 15 April 1993

• Then redisplay all the text and graphics objects by executing the PostScript
language programs that describe them. Only those areas within the view clip
will actually be repainted.

This strategy reduces annoying window flicker, but may do more work than is
necessary since programs describing graphics objects that are completely clipped
are executed anyway.

The most sophisticated technique, perhaps the optimal strategy, is similar to the
one just described:

• Use a list of rectangles from the exposure events to create a view clip.

• Then, instead of running all of the PostScript language programs, redraw only
those graphics objects whose bounding boxes intersect the view clip.

This strategy requires that the application keep track of the bounding boxes and
locations of each graphical object, but this task is usually necessary anyway,
particularly for interactive applications that allow selection and manipulation of
objects. User paths are handy for this purpose (seePostScript Language
Reference Manual, Second Edition), since they are compact data structures that
contain their own bounding box information. The list of rectangles obtained from
the exposure events can be enumerated and intersected with the bounding box of
each user path. Bounding box intersection may still result in some code being
executed unnecessarily, but it is a good compromise between time spent deciding
which graphical objects to redraw and time spent drawing the objects.

3.3.4 Resizing the Window

When the window is resized, the X server moves the window bits according to
the bit gravity of the window. If the window is being used for imaging with the
PostScript language, the origin of the device space is also moved according to the
bit gravity of the window; see the section titled “Coordinate Systems” on page
PG-91” for a discussion of coordinate systems. The result of this automatic
movement is that thex andy offsets that were specified when the context was
created (or that were last changed with thesetXoffset operator) are changed.
The application may need to keep track of these changes.

Client Library Supplement for X 3 Basic Facilities CLX- 97

C
L

X

Table 1 shows the changes to thex andy offsets for each bit gravity type.

To get the currentx andy offsets, usecurrentXoffset .

3.3.5 User Object Indices

The Client Library provides a convenient and efficient way to refer to PostScript
language objects. This section presents one set of utilities available for working
with these objects. An alternate set of utilities is available in the Display
PostScript Toolkit and documented in section 4 of theDisplay PostScript Toolkit
for X.

Some types of composite or structured objects, such as dictionaries, gstates, and
user paths, are not visible as data outside the PostScript interpreter; that is, they
cannot be represented directly in any encoding of the language, not even in
binary object sequence encoding. Instead, an application must refer to such
objects by means of surrogate objects whose values can be encoded and
communicated easily.

Table 1 How bit gravity affects offsets

Symbol Meaning

oldX Originalx offset

oldY Originaly offset

wc Change in window size along thex axis (width)

hc Change in window size along they axis (height)

Bit Gravity New x offset New y offset

NorthWest oldX oldY

North oldX + wc/2 oldY

NorthEast oldX + wc oldY

West oldX oldY + hc/2

Center oldX + wc/2 oldY + hc/2

East oldX + wc oldY + hc/2

SouthWest oldX oldY + hc

South oldX + wc/2 oldY + hc

SouthEast oldX + wc oldY + hc

ForgetGravity No change No change—appears as if NorthWest

Static oldX + wc oldY + hc

CLX-98 Client Library Supplement for X 15 April 1993

The surrogate objects provided by the Client Library are called user objects. A
user object is simply an identifier (typically an integer of typelong int) that
represents an actual object (of any type) in the interpreter. To define a new user
object, the application must first obtain a user object index from the Client
Library. TheDPSNewUserObjectIndex procedure returns a new user object
index. The Client Library is the sole allocator of new user object indices in order
to guarantee that indices are unique. User object indices are dynamic and should
not be used as arithmetic values (for example, don’t add 1 to get the next
available index). Also, do not store user object indices in a file or other long-term
storage.

After obtaining a user object index, the application must associate this index with
an actual object. You first execute a PostScript language program to create the
object, then execute thedefineuserobject operator.

Once a user object has been defined, the application may call wrapped procedures
to manipulate it. User objects may be passed as input arguments to a wrapped
procedure.

User objects are typically employed under the following circumstances:

• When graphical objects or other application objects are created dynamically,
such as the user path a graphics editor builds as the user draws an illustration.

• When a user name should not be employed. A user object is a convenient and
efficient substitute for a dynamically defined user name, which must be passed
to a wrap as a string.

SeePostScript Language Reference Manual, Second Edition, andpswrap
Reference Manual for further discussion of user objects.

Note that it is the responsibility of the application and any runtime facilities or
support software (such as toolkits) to keep track of user object definitions. A user
object must be defined before it is used. Unlike user name indices (which are
defined automatically by the Client Library), user objects must be defined
explicitly. To assist in keeping track of user object definitions, the last user object
index assigned can be read fromDPSLastUserObjectIndex, which should be
treated as read-only.

In the following code example, a hypothetical toolkit implements a user interface
that displays icons for files and programs. The user interface allows the end user
to customize the label of the icon by changing the text and to specify the font of
the label text. The icon is represented as a PostScript language dictionary.

Client Library Supplement for X 3 Basic Facilities CLX- 99

C
L

X

Example 1 Implementing a user interface to display icons

Wrap definitions:

defineps New_Icon(long iconIndex; int x,y; long progIndex;

char *font, *text)

% Input Arguments:

% iconIndex

% user object index provided by application

% x,y

% coordinates of lower left corner of icon

% progIndex

% user object index which represents a PostScript

% language program for drawing the icon

% font

% string to be used as a font name

% text

% label for icon

5 dict dup% Create the icon dict.

iconIndex exch defineuserobject

% Define the user object for the dict.

begin % Begin the icon dict.

/icon_x x def% Assign x coordinate.

/icon_y y def% Assign y coordinate.

/icon_prog

UserObjects progIndex get

% Get and def icon drawing procedure

def % (assumes userdict is on dict stack)

/icon_font /font def% Assign label font name.

/icon_label (text) def% Assign label text.

end % End icon dictionary.

endps

/* a wrapped procedure to draw an arbitrary icon */

defineps Draw_Icon(userobject icon)

%Input Arguments:

%icon

% user object representing an icon dictionary.

% Note: since we are going to execute the object,

% we can declare it asuserobject to pswrap.

icon begin% Gets and execs the user object

% which is a dictionary, begins it.

% Note that there is an implicit

% execuserobject here since icon

% was declared 'userobject'.

gsave

icon_x icon_y translate% Put origin at specified

% coordinates.

CLX-100 Client Library Supplement for X 15 April 1993

gsave

icon_prog % Draw icon.

grestore

1 setgray

icon_font 10 selectfont% Scale and set icon label font.

0 0 moveto

icon_label show% Show label.

grestore

end

endps

C language code:

void MakeNewIcon(x, y, prog, label)

int x, y;

long prog;/* user object defined by application code */

char *label;

{

/* get a new user object index */

long icon = DPSNewUserObjectIndex();

char *defaultFontName = GetDefaultFontName();

/* Icon is a user object index: define icon user object */

NewIcon(icon, x, y, prog, defaultFontName, label);

/* Icon is now a user object: draw it */

DrawIcon(icon);

/* The following procedure call is not defined

 * in this example. It saves the user object created for

 * the new icon so that the application can use the user

 * object to refer to the icon. */

SaveNewIconObject(icon);

}

3.3.6 Errors and Error Codes

Two classes of errors can occur while using Display PostScript: protocol errors
and context errors.

Protocol errors are generated when invalid requests are sent to the server. The
result of receiving a protocol error is that lower-level facilities in Xlib handle the
error and perhaps print a message, while the higher-level facilities simply return
NULL or do nothing. The default protocol error handler prints an error message
and causes the application to exit. The application can substitute its own error
handler for protocol errors, but results are undefined if the handler returns rather
than exiting. (Generally, an attempt to continue processing after a protocol error
results in incorrect operation of procedures further up in the call stack.)

Client Library Supplement for X 3 Basic Facilities CLX- 101

C
L

X

Context errors can arise whenever aDPSContext handle is passed to a Display
PostScript procedure or wrap. X-specific error codes are discussed in “Extended
Error Codes” in 6.1, “Data Structures.” SeeClient Library Reference Manual for
a discussion of the standard Display PostScript error codes.

Because of various delays related to buffering and scheduling, a PostScript
language error may be reported long after the C procedure responsible for the
error has returned. Consider the following example:

DPSPrintf(ctxt, "%d %d %s\n", x, y, operatorName);

MyWrap1(ctxt);

MyWrap2(ctxt, &result);

Suppose the string pointed to byoperatorName does not contain a valid operator
and therefore generates anundefined error. The error may not be received when
DPSPrintf returns. It may not be received even whenMyWrap1 returns.
MyWrap2 returns a result, thereby forcing synchronization, so any errors caused
by the call toDPSPrintf or MyWrap1 will finally be received.

If MyWrap2 is called several statements afterMyWrap1 , it may be difficult to
figure out where the error originated. However, you can determine where errors
are likely to collect, such as places where the application and context will be
forced into synchronization, and work backward from there. If you make a list of
synchronization points in your code, say, A, B, C, D, and so on, an error received
at point C must have been generated by code somewhere between B and C. This
will help narrow down your debugging search.

A debugging alternative is to have the application check for an error by forcing
synchronization. (The synchronization should be removed in the final version of
the software because of its negative impact on performance.) For the details of
implementing synchronization, see section 6.4 inClient Library Reference
Manual.

The code in Example 2 has been simplified to make the principle clear; in an
actual application, you would probably want to choose a less verbose means of
including the debugging procedures. Every procedure call that sends PostScript
language code is followed by a call toDEBUG_SYNC. If the macro
DEBUGGING is true, DEBUG_SYNC will force the context to be synchronized;
if there are any errors, they will be reported. IfDEBUGGING is false,
DEBUG_SYNC will do nothing. Note that although a call toDEBUG_SYNC
after the call toMyWrap2 would be harmless, it is not needed becauseMyWrap2
returns a value and is therefore automatically synchronized.

Example 2 Debugging by forcing synchronization

C language code:

#ifdef DEBUGGING

#define DEBUG_SYNC(c) DPSWaitContext((c))

#else

CLX-102 Client Library Supplement for X 15 April 1993

#define DEBUG_SYNC(c)

#endif

...

DPSPrintf(ctxt, "%d %d %s\n", x, y, operatorName);

DEBUG_SYNC(ctxt);

MyWrap1(ctxt);

DEBUG_SYNC(ctxt);

MyWrap2(ctxt, &result);

3.3.7 Termination

When an application exits normally, all resources allocated on its behalf,
including contexts and spaces, are automatically freed. (This actually depends
upon the “close-down mode” of the server.) This is the most typical and
convenient method of releasing resources. However, any storage allocated in
shared VM (such as fonts loaded by the application) remains allocated even after
the application exits.

DPSDestroyContext andDPSDestroySpace are provided to allow an
application to release these resources without exiting. This might be needed if,
for example, the context and space must be destroyed and recreated from scratch
to recover from a PostScript language error. These procedures are described in
detail inClient Library Reference Manual. To summarize,DPSDestroyContext
destroys the context resource in the server and theDPSContextRec in the client.
DPSDestroySpace destroys the space resource in the server and the
DPSSpaceRec in the client as well as all contexts within the space, including
their DPSContextRec records.

Note that closing the display—withXCloseDisplay , for example—destroys all
context and space resources associated with that display, but does not destroy the
corresponding client data structures (DPSContextRec or DPSSpaceRec).

3.4 Status Events

At any given time, a context has a specific execution status. Status events are
provided for low level monitoring of context status. Most simple applications
won’t need this facility.

Status events can be used to perform the following tasks:

• Sending code, using flow control, from the application to a context.

• Controlling the suspension and resumption of execution.

• Synchronizing PostScript interpreter execution with X rendering requests.

• Monitoring a context to determine whether it is runaway, “wedged” (stuck), or
zombie.

Client Library Supplement for X 3 Basic Facilities CLX- 103

C
L

X

A status event is generated whenever a context changes from one state to another.
Status events can be masked in the server so that uninteresting events are not sent
to the client (seeXDPSSetStatusMask). Furthermore, the application will not
see any status events unless it registers a status event handler by calling
XDPSRegisterStatusProc . The default is to have no status events enabled and
no status event handler registered.

The procedureXDPSGetContextStatus returns the current status of a context
(as a synchronous reply to a request, not as an asynchronous event). The status of
a context may be one of the following states:

• PSSTATUSERROR. The context is in a state that is not described by the
other four status values. For example, a context that has been created but has
never been scheduled to execute will returnPSSTATUSERROR to
XDPSGetContextStatus . No asynchronous status event will have this value.

• PSRUNNING. The context has been running, has code to execute, or is
capable of being run. Fine point: No context is running while the server
processes requests or generates events, so this value really means that the
context is runnable.

• PSNEEDSINPUT. The context is waiting for code to execute, a condition
commonly known as being “blocked on input.”

• PSFROZEN. The execution of the context has been suspended by the
clientsync operator. A frozen context may be killed with
DPSDestroyContext , interrupted withDPSInterruptContext , or
reactivated withXDPSUnfreezeContext .

• PSZOMBIE. The context is dead. The resource data allocated for the context
still exists in the server, but the PostScript interpreter no longer recognizes the
context.

Except forPSSTATUSERROR, these status events can be disabled (see below).

If an application requires information about one or more types of status events, a
handler of typeXDPSStatusProc must be defined. Two arguments will be passed
to the callback procedure: theDPSContext handle for the context that generated
the status event and a code specifying the status event type. The
XDPSRegisterStatusProc procedure associates a status event handler with a
particularDPSContext. Each context may have a different handler.

Once a status event handler is established for the context, the application should
set the status event masks for the context by callingXDPSSetStatusMask . The
symbols for the mask values are

• PSRUNNINGMASK

• PSNEEDSINPUTMASK

CLX-104 Client Library Supplement for X 15 April 1993

• PSZOMBIEMASK

• PSFROZENMASK

A mask is constructed by applying a logical OR of the mask values to the
appropriate mask; for example,

enableMask = PSRUNNINGMASK | PSNEEDSINPUTMASK;

sets the bits that indicate interest in thePSRUNNING andPSNEEDSINPUT
status event types. A 1-bit means interest in that type; a 0-bit means “no change”
or “don’t care.”

The context can handle a given status event type in one of three ways:

• If the application wants to be notified of the event every time it occurs, the
event should be enabled.

• If the application wants never to be notified of the event, the event should be
disabled.

• If the application wants to be notified of only the next occurrence of the event,
the event should be set tonext.

Caution: Because the Display PostScript extension executes asynchronously from the
application, careful synchronization must take place when requesting the next
occurrence of an event or future occurrences of the event. Without this
synchronization, the event that the application is looking for may have already
occurred and been discarded.

The application defines the method of handling each status event type by setting
bits in three masks:enableMask, disableMask, andnextMask.

Call XDPSSetStatusMask to set the masks. Note that a particular bit may be set
in only one mask. Bits set in thenextMask enable the events of that type. When
the context changes state, an event is generated. If its type is specified in the
nextMask, the application is notified of the event and all subsequent events of
that type are automatically disabled.

In Example 3, an application currently hasPSNEEDSINPUT andPSRUNNING
enabled and all other types disabled. It now asks to be notified of every transition
to PSFROZEN andPSZOMBIE and only the next transition to
PSNEEDSINPUT. The masks would be constructed as follows:

Example 3 Constructing masks

C language code:

enableMask = PSFROZENMASK | PSZOMBIEMASK;

disableMask = PSRUNNINGMASK;

nextMask = PSNEEDSINPUTMASK;

Client Library Supplement for X 3 Basic Facilities CLX- 105

C
L

X

XDPSSetStatusMask(ctxt, enableMask, disableMask,

nextMask);

Even though the previous setting forPSNEEDSINPUT was enabled,
PSNEEDSINPUT need not be disabled in order to change the treatment of this
event to “next only.”

See 4.8, “Synchronization,” for details on how thePSFROZEN status event can
be used.

3.4.1 Event Dispatching

The Client Library is responsible for handling events from the Display PostScript
X extension. In addition to the status events described in the previous section, the
library handles output events that send wrap return values and PostScript
language output back to the application.

The Client Library usually dispatches events from the Display PostScript
extension in a wire-to-event converter (a procedure that Xlib calls to format event
data from the X server). The events do not appear in the normal X event stream.
This can cause problems with certain software libraries—for example, the R4 Xt
library—that assume thatXNextEvent will not block if its connection has data
available to be read. If you use one of these libraries and the library calls
XNextEvent , that call does not return until there is an actual X event to dispatch.
Since the events the Display PostScript extension sends do not appear on the
normal X event stream, your application may hang until the user does something
to generate an event.

Further, event handlers that are invoked using this internal dispatching scheme
(described in the previous paragraph) cannot call X or Display PostScript
procedures, since Xlib is not reentrant at this level. In that case, the event handler
must either queue a task to be done outside the handler or must set a flag. The
resulting program logic is often complex.

An alternative to internal event dispatching is pass-through event dispatching.
Here, the Client Library causes the events to appear in the normal X event
stream. The application is then responsible for dispatching the events by calling
XDPSDispatchEvent .

To change or query how the Client Library delivers events, an application can
call XDPSSetEventDelivery . XDPSSetEventDelivery allows an application to
choose between the default, internal event dispatching, and pass-through event
dispatching.

CLX-106 Client Library Supplement for X 15 April 1993

Applications that use pass-through event delivery can callXDPSIsDPSEvent ,
XDPSIsStatusEvent , andXDPSIsOutputEvent to identify events from the
Display PostScript extension. Alternatively, they can pass all events to
XDPSDispatchEvent and letXDPSDispatchEvent identify the extension
events.

Pass-through event dispatching is strongly recommended for the following types
of applications:

• Applications that use the X Toolkit (Including OSF/Motif applications)

• Applications that handle status events

• Applications that handle text messages from the Display PostScript extension
by displaying them in a window

When using pass-through event delivery, youmust pass all output events to
XDPSDispatchEvent . Status events may be passed toXDPSDispatchEvent ,
or they may be handled in place.XDPSDispatchEvent passes any status events
to the status event handler for the event’s context. If the application wants to
handle events in place, it can callXDPSIsStatusEvent , which identifies an
event as a status event and extracts the status information from it. The application
can then process the information directly.

Applications that use pass-through event delivery must not use
XtAppProcessEvent to handle X events;XtAppProcessEvent ignores the
extension events. It is safe to callXtAppProcessEvent with a mask of
XtIMTimer or XtIMAlternateInput, but it is unsafe to call it with a mask of
XtIMXEvent or XtIMAll.

Always callXDPSDispatchEvent before callingXtDispatchEvent . In the MIT
release of the X Window System, a bug in the implementation of
XtDispatchEvent may cause a core dump when an extension event is passed.
The Xt main loop for this case is shown in Example 4.

Example 4 Calling XtDispatchEvent

C language code:

while (1) {

XEvent event;

XtAppNextEvent(app, &event);

if (!XDPSDispatchEvent(&event) &&

!XtDispatchEvent(&event)) {

/* Handle undispatched event */

 }

}

The call

Client Library Supplement for X 3 Basic Facilities CLX- 107

C
L

X

XDPSIsDPSEvent(&event)

is equivalent to

(XDPSIsStatusEvent(&event, NULL, NULL) ||

XDPSIsOutputEvent (&event))

The call

XDPSDispatchEvent(&event)

is equivalent to

if (XDPSIsStatusEvent(&event, NULL, NULL)) {

<Call status event handler>

return True;

} else if (XDPSIsOutputEvent(&event)) {

<call output event handler>

return True;

} else return False;

3.4.2 Wrap Considerations

When an application calls a wrap that returns a value, the Client Library must
wait for the results. During this wait, the Client Library dispatches any status and
output events to the appropriate event handler as they arrive, using the current
event dispatching mode.

If pass-through event dispatching is used, status event handlers and text
procedures are allowed to call wraps that do not return values, Xlib procedures,
and Display PostScript procedures other thanDPSWaitContext . They are not
allowed to callDPSWaitContext or wraps that return a value; if they do, a
dps_err_recursiveWait error can occur.

If a status event handler or text procedure is invoked with internal event
dispatching, it may not call wraps or any X or Client Library procedures.

If a dps_err_recursiveWait error occurs, wraps usually return incorrect values,
and further errors may be triggered. Applications that handle their own errors
should treatdps_err_recursiveWait as a fatal error.

Note: To avoid occurrences ofdps_err_recursiveWait errors, status event handlers
and text procedures must not callDPSWaitContext or wraps that return values.

CLX-108 Client Library Supplement for X 15 April 1993

4 Additional Facilities

This section describes advanced features of the Display PostScript extension to
the X Window System.

4.1 Identifiers

Display PostScript defines two new server resource types: one for contexts and
another for spaces. A context or space resource in the server is defined by an X
resource ID (XID).

The client has its own representation of contexts and spaces.DPSContext is a
handle (a pointer) to aDPSContextRec allocated in the client’s memory.
DPSSpace is a handle to aDPSSpaceRec allocated in the client’s memory.

Applications need not use X resource IDs to refer to contexts or spaces. Instead,
they can pass the appropriate handle to Client Library procedures.

However, if the resource ID of a context or space is required, there are routines
available for translating back and forth between handles and IDs.

• XDPSXIDFromContext returns an X resource ID for a givenDPSContext
handle.

• XDPSXIDFromSpace returns an X resource ID for a givenDPSSpace
handle.

• XDPSContextFromXID returns aDPSContext handle, given its X resource
ID.

• XDPSSpaceFromXID returns aDPSSpace handle, given its X resource ID.

The PostScript interpreter uses a unique integer, thecontext identifier, to identify
a context. The context identifier is defined by the PostScript language and is
completely independent of X resource IDs. Thecurrentcontext operator returns
the context identifier for the current PostScript context.

Note: A context created by an existing context with thefork operator has no identity
other than the context identifier returned by thefork operator; the forked context
has neither an X resource ID nor aDPSContext handle. See section 4.5,
“Forked Contexts” for more information.

To get theDPSContext handle associated with a particular context identifier, call
XDPSFindContext . If the client knows about the specified context, a valid
DPSContext handle is returned; otherwiseNULL is returned.

There is no direct translation between the PostScript context identifier and the X
resource ID.

Client Library Supplement for X 4 Additional Facilities CLX- 109

C
L

X

If a PostScript context terminates (either by request or as the result of an error),
the resource allocated for it lingers in the server. The X resource ID for the
context is still valid, but the context identifier is not. Such a context is called a
zombie. See 4.2, “Zombie Contexts,” for more information.

4.2 Zombie Contexts

A context can die in a number of ways, most commonly as the result of a
PostScript language error, such as operand stack underflow or use of an
undefined name.

If a context is killed, or dies from an error, its server resource lingers. An X
server resource that represents a terminated context is known as azombie context.
Requests made to a zombie context will fail. The resource associated with a
zombie context can be freed with theDPSDestroyContext procedure.
Alternatively, the resources will be freed when theDisplay is closed, typically at
application exit.

Any request made to a zombie context will generate a status event of type
PSZOMBIE. See section 3.4, “Status Events,” for more information.

4.3 Buffers

As discussed inClient Library Reference Manual, buffering is often used to
enhance throughput. For the most part, an application need not be concerned with
buffering of requests to a context or output from a context. However, facilities are
provided to flush buffers if needed.

All Display PostScript requests sent to the server are buffered by Xlib, like any
other X requests.DPSFlushContext will flush any code or data pending for a
context, as well as any X requests that have been buffered. For portability and
performance enhancement, useDPSFlushContext rather thanXFlush if the
application has sent code or data to a context since the last flush.

Streams created by the PostScript interpreter are buffered, including the input and
output streams associated with a PostScript execution context. Buffers are
automatically flushed as needed. The automatic flushing is usually sufficient.
However, should the application need to flush output from a context, theflush
operator can be used. Note that wrapped procedures that return results include a
flush operator at the end of the wrap code.

4.4 Encodings

Client Library Reference Manual discusses the general concept of encodings and
conversions. A wrapped procedure always generates a binary object sequence,
which is passed to the context for further processing. Typically, the binary object
sequence is simply passed to the lowest level of the Client Library to be packaged
into a request, without any change to its contents. However, by setting the

CLX-110 Client Library Supplement for X 15 April 1993

encoding parameters of theDPSContextRec with theDPSChangeEncoding
procedure, you can convert the binary object sequence to some other encoding
before it is sent or written.

Display PostScript supports the conversions shown in Table 2:

Table 2 Encoding conversions

Conversion Description

Binary object sequence to ASCII This conversion makes a binary object sequence readable by humans. It
allows the output of wrapped procedures to be inspected and analyzed. It
is also useful for generating page descriptions to be printed. This is the
default setting for text contexts. Execution contexts can also be made to
convert binary object sequences to ASCII, but there is little purpose in
doing so.

Binary object sequence to binary-encoded tokens

Binary-encoded token encoding is the most compact encoding for the
PostScript language. This conversion is useful for storing code
permanently or for exchanging code with another application. Either a text
context or an execution context can perform this conversion, but it is
mainly used for text contexts.

Binary object sequence with user name indices to binary object sequence with user name strings

This conversion is necessary if the binary object sequence is going to be
stored permanently (for example, on a file) or if the binary object sequence
is to be used by another client or with a shared context (see 4.7, “Sharing
Resources”). User name indices are created dynamically and are unique
only within a single “instance” of the Client Library—for example, in the
application’s process address space. In this case, user names must be
represented by strings if they are to be used outside the application’s
process address space.

Client Library Supplement for X 4 Additional Facilities CLX- 111

C
L

X

4.5 Forked Contexts

The PostScript language allows an existing context to create another context by
means of thefork operator. However, when a forked context is created, it has no
DPSContext handle or X resource ID associated with it (see 4.1, “Identifiers”).
This is fine if the application does not need to communicate with the forked
context. A context that was forked to do some simple task in the background may
terminate without generating any output. If the application does need to
communicate with a forked context, both aDPSContext handle and an X
resource ID must be created for the context.

To create a resource ID andDPSContext handle for a forked context, call
DPSContextFromContextID :

DPSContext DPSContextFromContextID(ctxt, cid, textProc,

 errorProc)

DPSContext ctxt;

ContextPSID cid;

DPSTextProc textProc;

DPSErrorProc errorProc;

ctxt specifies the context that created the forked context. In other words,ctxt is
the context that executed thefork operator.cid is along int that specifies the
PostScript context identifier (not the X resource ID) of the forked context.

Binary-encoded tokens to ASCII This conversion allows binary-encoded tokens read from an external data
source such as a file to be converted to ASCII for human inspection, sent
to an interpreter, or stored in a page description for printing. After the
context’s encoding has been set usingDPSChangeEncoding , buffers of
binary-encoded tokens can be read and passed toDPSWritePostScript
for conversion. Either a text context or an execution context can perform
this conversion, but it is used mainly for text contexts.

For example, the procedure call below causes a text context to generate
binary-encoded tokens:

DPSChangeEncoding(textContext, dps_encodedTokens,

textContext->nameEncoding);

The next example causes an execution context to convert user name
indices to user name strings:

DPSChangeEncoding(context, context->programEncoding,

dps_strings);

Table 2 Encoding conversions (Continued)

Conversion Description

CLX-112 Client Library Supplement for X 15 April 1993

textProc anderrorProc are the usual context output handlers. IftextProc is
NULL, the text handler fromctxt is used. IferrorProc is NULL, the error handler
from ctxt is used.

DPSContextFromContextID returns aDPSContext handle ifctxt andcid are
valid, otherwise it returnsNULL.

Note: Implementation limitations should be kept in mind when using thefork operator.
A context can consume a significant amount of memory. Furthermore, the total
number of contexts that can be created in a server is relatively small—on the
order of 50 to 100.

Caution: When using forked contexts, plan to useDPSContextFromContextID to hook
up with them for debugging, even if the eventual use of the forked context does
not require that the application communicate with it. If a forked context
generates a PostScript language error but there is no resource ID or
DPSContext handle associated with it, the application will never see the error.

Contexts created byfork exist until they are killed or joined (using thejoin
operator). A context terminated by thedetach operator, however, goes away as
soon as it finishes executing.

4.6 Multiple Servers

An application may create contexts simultaneously on several display devices,
each with its own server, at the same time. In these cases, the application must
process events from each server to which it is connected.

In order to support access to multiple servers, Display PostScript procedures take
a pointer toDisplay records where appropriate.

4.7 Sharing Resources

Execution contexts and spaces can be identified by their X resource identifiers.
These identifiers can be passed to other clients to enable sharing of resources.

Caution: There is no support in the Client Library for maintaining the consistency of
shared resources. In general, applications should not share resources because of
the complexity of managing them.

If an application needs to share execution context information with other clients,
the shared VM facility and the mutual exclusion operators provided by the
PostScript language (lock , monitor , and so on) may be adequate for that
purpose. See PostScript Language Reference Manual, Second Edition.

If these facilities are not adequate, the procedures described in this section can
be used.

Client Library Supplement for X 4 Additional Facilities CLX- 113

C
L

X

XDPSContextFromSharedID andXDPSSpaceFromSharedID are provided
to allow a client to communicate with resources created by a different client.

For the most part, aDPSContext handle created for a shared resource can be
used like any other handle. However, there are some restrictions. The following
list, though not exhaustive, presents some of the issues related to sharing
resources:

• User names in binary encodings of the PostScript language must be sent as
strings. This is because the mapping of user name indices is not guaranteed to
be unique across clients. The defaultDPSNameEncoding of the
DPSContextRec created for a shared context isdps_string. It cannot be
changed todps_indexed.

• Output from the context, including wrap result values, text, and errors, is sent
only to the context’s original creator, not to any clients sharing the context.
Status events, however, are sent to all clients sharing the context, as specified
by the status event mask (see 3.4, “Status Events”).

• WhenDPSDestroyContext or DPSDestroySpace is applied to a shared
context or space, only the client-side data structures are destroyed. The
execution context, the space, and the resources associated with these objects
can be destroyed only by the creator.

• If the creator destroys resources, any reference to a destroyed resource will
result in a protocol error, which is sent to the client sharing the resource.

It is up to the application that allows resource identifiers to be shared, and the
clients sharing those resources, to cooperate and maintain consistency.

4.8 Synchronization

As discussed in “Mixing Display PostScript and X Rendering” in 3.3,
“Execution,” X rendering primitives and PostScript language execution may, in
most cases, be intermixed freely. However, in some situations PostScript
language execution needs to be synchronized with X.

SeeClient Library Reference Manual for a discussion of the general
requirements for synchronization. To summarize, you can synchronize either by
calling wraps that return results or by callingDPSWaitContext . Enforced
synchronization is expensive and should be used only when absolutely necessary.

Note: Synchronizing with the Display PostScript extension also synchronizes with the X
server; there is no need to callXSync explicitly. The reverse is not true; calling
XSync does not synchronize with the Display PostScript extension.

Flushing, however, works both ways: flushing an X connection flushes all
contexts on that connection, and flushing a context flushes the X connection of
that context.

CLX-114 Client Library Supplement for X 15 April 1993

For example, suppose a previewer application displays a page of text and
graphics that is represented by a PostScript language page description in a file.
The user interface of the application may require the entire page to be imaged to
a pixmap before it is realized on the physical display. The application reads the
ASCII-encoded PostScript language code from the file and sends it to the server
with theDPSWritePostScript procedure. The context executes the code as it is
received, and renders to the pixmap.

If the file contains only one page, and the page description is simple, the
application knows that the pixmap is complete when it has read to the end of the
input file and calledDPSWaitContext . It may now callXCopyArea to copy the
pixmap to the application display window.

However, if the file contains more than one page, the application cannot know
when the rendering to the pixmap is complete. If it callsXCopyArea too soon,
the context may not have finished drawing. As a result, an incomplete image will
be displayed on the screen.

There are two main strategies for handling situations such as the one described
above: waiting and freezing. The first is applicable if the application has
sufficient knowledge of the content of the PostScript language code to know
where the beginning and the end are located. The second is used only if the
application has no reliable knowledge of the code content.

4.8.1 Waiting

Causing the context to wait is appropriate when the PostScript language code to
be executed has a known structure. This is true in either of the following
circumstances:

• The application has complete control of the code to be executed. That is, it
uses wrapped procedures, single-operator procedures, or dynamically
generated code fragments such as user path descriptions. No code comes from
external sources such as end-user input.

• The application reads external files with a known structure that can be parsed
and understood, such as PostScript language page descriptions that are
compliant with Adobe’s Document Structuring Conventions.

Most applications that require synchronization fall into one of the two categories
described above. In both cases, the application knows exactly
how much PostScript language code needs to be sent for a complete display. In
these cases, the application sends the code and then forces all code to be
executed, either withDPSWaitContext or as a side effect of calling a wrap that
returns a value. When either of these procedures returns, the application knows
that all rendering is done and that other X requests can now be sent.

Client Library Supplement for X 4 Additional Facilities CLX- 115

C
L

X

4.8.2 Freezing

Freezing a context is appropriate if the application cannot determine the
completeness of the PostScript language code to be executed. This can happen if
an end user is allowed to enter arbitrary PostScript language programs (for
instance, in an interactive interpreter executive) or if an input file lacks a
well-defined structure.

In this case, the input must contain an executable name that the application has
defined. For example, theshowpage operator terminates each page in a page
description file. The application can take advantage of this by defining
showpage to execute an operator that will notify the application that the page is
done. Theclientsync operator fulfils this function:

/old_showpage /showpage load def

/showpage {old_showpage clientsync} bind def

Whenclientsync is executed, the context is put into thePSFROZEN state, and
a PSFROZEN event is generated. The application must have enabled the
PSFROZEN event and registered a handler for that context; see 3.4, “Status
Events” for more information on status events. The handler may then set a flag
indicating that the image in the pixmap is complete. The next time the application
goes around its main loop, it can test the flag and callXCopyArea .

A frozen context can still receive interrupts.DPSInterruptContext will
interrupt a context whether it is frozen or not.

CLX-116 Client Library Supplement for X 15 April 1993

5 Programming Tips

This section contains tips to help you program applications that use the Display
PostScript system extension to the X Window System.

5.1 Avoid XIfEvent

If your application uses internal event dispatching as described in section 3.4, it
should not useXIfEvent . This routine will cause events that were generated and
queued by an execution context to be processed repeatedly (once for each call to
XIfEvent) without being dequeued. This may result in wrap results or text output
being erroneously duplicated or may cause false status events to be reported. Use
XCheckIfEvent instead.

This restriction does not apply to applications using pass-through event
dispatching and may not apply to future implementations of Xlib.

Caution: If your toolkit usesXIfEvent , you may see the erroneous effects described above
even though your application does not useXIfEvent directly.

5.2 Include Files

Include the<DPS/dpsXclient.h> header file when compiling Display PostScript
applications. This header file includes the required header files (dpsclient.h and
dpsfriends.h) described in sections 9 and 11 ofClient Library Reference Manual.

Include<DPS/dpsops.h> if your application uses single-operator procedures
with explicit contexts.

Include<DPS/psops.h> if your application uses single-operator procedures with
implicit contexts.

Include<DPS/dpsexcept.h> if your application uses exception handling as
defined inClient Library Reference Manual.

5.3 Use Pass-Through Event Dispatching

UseXDPSSetEventDelivery as described in section 3.4 to set pass-through
event dispatching for your application’s contexts. Pass-through event dispatching
has many advantages:

• Your application can make X and Display PostScript calls in its text and status
event handlers. For example, writing a text handler that displays the text in a
window is easy. In contrast, internal event dispatching would require the text
handler to queue up the display task and leave its execution to the main
application.

Client Library Supplement for X 5 Programming Tips CLX- 117

C
L

X

• Your application avoids potential delays from toolkits that do not expect
events to be dispatched internally.

• Your application can handle status events directly rather than having a status
event handler that sets flags for the main application to test.

Note: Here are two important things to remember when using pass-through event
dispatching in X Toolkit applications:

• Always callXDPSDispatchEvent before callingXtDispatchEvent .

• Never useXtAppProcessEvent to handle X events.

5.4 Be Careful With Exception Handling

The exception handling facilities described in Appendix B ofClient Library
Reference Manual can be used in X programs, but you must be very careful not to
jump through any Xlib or X Toolkit procedures. The internal state of the libraries
may become corrupted. Here are some examples of uses thatnot safe:

• Do not raise an exception in any X Toolkit callback procedure.

• Do not raise an exception in the predicate procedure toXIfEvent or any of the
related event handling procedures.

• Do not raise an exception in an event handler or text procedure unless you are
using pass-through event dispatching.

• Do not raise an exception in an error handler.

5.5 Coordinate Conversions

The code examples in this section demonstrate an efficient method of doing
coordinate conversions. (For an introduction to coordinate system issues, see
“Coordinate Systems” in 3.3, “Execution.”)

At initialization, and immediately after any user space transformation has been
performed (for example, afterscale , rotate , or setmatrix), the application
should execute PostScript language code to get the CTM (current transformation
matrix), the inverse of the CTM, and the current origin offset. The wrap shown in
Example 5 will return these values:

Example 5 Getting CTM, inverse CTM, and current origin offset

Wrap definition:

defineps PSWGetTransform(DPSContext ctxt | float ctm[6],

invctm[6]; int *xOffset, *yOffset)

matrix currentmatrix dup ctm

CLX-118 Client Library Supplement for X 15 April 1993

matrix invertmatrix invctm

currentXoffset yOffset xOffset

endps

Call thePSWGetTransform wrap as necessary, saving the return values in
storage associated with the window:

Example 6 Calling PSWGetTransform

C language code:

DPSContext ctxt;

float ctm[6], invctm[6];

int xOffset, yOffset;

PSWGetTransform(ctxt, ctm, invctm, &xOffset, &yOffset);

To convert an X coordinate into a user space coordinate, perform the calculations
shown in Example 7.

Example 7 Converting an X coordinate to user space

C language code:

#define A_COEFF 0

#define B_COEFF 1

#define C_COEFF 2

#define D_COEFF 3

#define TX_CONS 4

#define TY_CONS 5

int x, y; /* X coordinate */

float ux, uy; /* user space coordinate */

x –= xOffset;

y –= yOffset;

ux = invctm[A_COEFF] * x + invctm[C_COEFF] * y +

invctm[TX_CONS];

uy = invctm[B_COEFF] * x + invctm[D_COEFF] * y +

invctm[TY_CONS];

To convert a user space coordinate into an X coordinate, perform the calculations
shown in Example 8.

Client Library Supplement for X 5 Programming Tips CLX- 119

C
L

X

Example 8 Converting a user space coordinate to an X coordinate

C language code:

x = ctm[A_COEFF] * ux + ctm[C_COEFF] * uy + ctm[TX_CONS] +

xOffset;

y = ctm[B_COEFF] * ux + ctm[D_COEFF] * uy + ctm[TY_CONS] +

yOffset;

The equations listed above have the following limitations:

• X coordinates must be positive. Otherwise, use thefloor function to avoid the
implicit truncation that happens when floating-point values are assigned to
integers.

• Beware of round-off errors. Incorrect coordinates may be computed in either
direction.

5.6 Fonts

Thefilenameforall operator can be used to obtain a list of the fonts available to
the server. SeePostScript Language Reference Manual, Second Edition, for a
description offilenameforall . Use the pattern

(%font%*)
to generate a list of fonts. The font file names may be sent back as ASCII text and
processed with a customized text handler, or they may be stored in an array and
then accessed one at a time by calling a wrapped procedure.

Outline fonts are resources. As with any other resource, there’s no guarantee that
a given font will be present on any particular server. The application must be
written to deal with afindfont or selectfont operator that fails because it can’t
find the font. It is possible to redefinefindfont andselectfont so that they
substitute some default font when the requested font is not available. Indeed, the
default definition offindfont in a given environment may already do this.

5.7 Portability Issues

The Display PostScript extension enhances the portability of X applications by
providing flexibility with respect to color, resolution, and fonts.

5.7.1 Color

Use PostScript operators such assetrgbcolor rather than X primitives to draw
with color. The PostScript interpreter will provide the best rendering possible for
the device. The Display PostScript system can produce a variety of halftone
patterns representing gray values or colors, so that one color can be seen against

CLX-120 Client Library Supplement for X 15 April 1993

the background of another color even on a monochrome device. Contrast this
with the rendering facilities of the X Window System, where a request for any
color other than white on a monochrome device will give you black.

Display PostScript color rendering is device independent. Here’s how Display
PostScript handles color requests:

• On a monochrome device, you’ll get a dithered (halftone) pattern of black and
white pixels. For example, if you ask for red by specifying1 0 0 setrgbcolor
you’ll get some halftone gray pattern composed of black and white pixels; this
pattern will be distinct from other “colors.”

• On a grayscale device, you’ll get a halftone pattern using gray levels; this
offers greater distinction among “colors.”

• On a color device (4-plane, 8-plane, and so on), you’ll get the requested color
if it’s one of those predefined for the context; otherwise you’ll get a dithered
pattern of RGB pixels that approximates the color.

• If you’ve allocated solid colors beyond those predefined for the context, you’ll
get a nondithered color just as you would with X (subject to the same
restrictions).

• A color request will never simply fail.

X Window System color rendering, on the other hand, is device dependent:

• On a monochrome device, a request for any color will give you black. There’s
no way to differentiate between “pink” and “olive green,” as there is with
PostScript language color rendering.

• On a color device, you’ll get the color you requested only if there’s space in
the colormap or the device is a TrueColor device.

• A color request can fail, and there’s no recourse except to try requesting a
different color.

5.7.2 Resolution

The Display PostScript extension offers you device independence with respect to
resolution.

In Display PostScript, positions and extents are specified with
resolution-independent units such as points. An inch is always an inch. Window
elements will always have the same absolute size, regardless of the device.

Client Library Supplement for X 5 Programming Tips CLX- 121

C
L

X

In the X Window System, positions and extents are specified in units of pixels.
The size of a pixel depends on the device. One inch may be 75 pixels on one
display and 100 pixels on another display. This causes strange distortions of size
when creating windows on various display devices.

5.7.3 Fonts

In the X Window System, you can’t rely on the availability of a given point
size/typeface combination. If you request 9-point Helvetica*, for example, and
that point size is not available, you must make another request.

The Display PostScript extension gives you added flexibility with respect to
fonts:

• You can have any point size as long as the typeface is present. If you request a
size that’s not available, Display PostScript generates it for you.

• The typeface can be rendered in any rotation or two-dimensional
transformation.

5.8 Using Custom Operators

After the execution of asetXgcdrawable , setXgcdrawablecolor , or
setXoffset operator, the following graphics state parameters are left in an
indeterminate state:

• The current transformation matrix

• The clipping path

• The transfer function

Each of the parameters will either keep its previous value or be restored to its
initial value, but it is not always possible to predict which. To return the
parameters to a known state, follow one of the following techniques:

• Reset the parameters to their initial values after executingsetXgcdrawable ,
setXgcdrawablecolor , orsetXoffset by executing the following PostScript
language code:

Example 9 Resetting clipping path, transfer function, and CTM

PostScript language code:

initmatrix

initclip

gsave initgraphics currenttransfer grestore settransfer

CLX-122 Client Library Supplement for X 15 April 1993

• Retain the previous values of the parameters by surrounding the use of
setXgcdrawable , setXgcdrawablecolor , orsetXoffset with the following
PostScript language code:

Example 10 Retaining previous values of clipping path, transfer function, and CTM

PostScript language code:

matrix currentmatrix

clippath

currenttransfer

%

% use of setXgcdrawable,

% setXgcdrawablecolor, or setXoffset

%

settransfer

initclip clip

setmatrix

Note that the second method changes the current path; maintaining both the
current path and the clipping path is complex and rarely necessary. Retaining the
graphics state parameter values may lead to unexpected results when the
application switches among drawables on different screens or different visuals,
and is not recommended in this case.

You may mix the two techniques for different graphics state parameters. For
example, to reset the clipping path and transfer function but keep the current
transformation matrix, execute the following PostScript language code:

Example 11 Resetting clipping path and transfer function while keeping CTM

PostScript language code:

matrix currentmatrix

%

% use of setXgcdrawable, setXgcdrawablecolor, or setXoffset

%

setmatrix

initclip

gsave initgraphics currenttransfer grestore settransfer

If you know that one of the parameters has not been changed from its initial
value, you can safely ignore that parameter. For example, if you do not change
the transfer function, it will be left in its initial state after you execute
setXgcdrawable , setXgcdrawablecolor , or setXoffset —either because the
initial value has been reestablished, or because it has been inherited.

For performance reasons, you should executesetXgcdrawable ,
setXgcdrawablecolor , andsetXoffset as infrequently as possible. It is more
efficient to capture a particular graphics state configuration as a gstate object and

Client Library Supplement for X 5 Programming Tips CLX- 123

C
L

X

usesetgstate to return to it than to usesetXgcdrawable ,
setXgcdrawablecolor , orsetXoffset to reestablish the configuration each time
you need it. In addition, the graphics state indeterminacies described above do
not occur when using gstate objects.

5.9 Changing Fields in Graphics Contexts

If you change any fields in a graphics context (GC) that is being used by an
execution context, you must ensure correct synchronization with the extension by
performing the following steps:

1. CallDPSWaitContext for each execution context that is using the GC. This
guarantees that all PostScript language code that should execute with the old
GC values has completed. You can omit this step if the contexts are already
synchronized with the application.

2. Use Xlib calls to change the values in the GC.

3. CallXFlushGC for the GC.XFlushGC was added to Xlib in X11 Release 5
and is not available in libraries conforming to earlier releases. If necessary,
you can define it in your program as shown in Example 12.

Example 12 Defining XFlushGC

C language code:

#ifndef XlibSpecificationRelease/* New to X11/R5 */

#include <X11/Xlibint.h>

voidXFlushGC(dpy, gc)

Display *dpy;

GC gc;

{

FlushGC(dpy, gc);

}

#endif /* XlibSpecificationRelease */

4. Further PostScript language code now executes with the new values of the
GC.

CLX-124 Client Library Supplement for X 15 April 1993

6 X-Specific Data and Procedures

This section describes the system-specific data types and procedures for the
Display PostScript extension to X.

6.1 Data Structures

Data structures defined in the<DPS/dpsXclient.h> header file are described
below.

6.1.1 Extended Error Codes

The following error codes for the X Window System are in addition to those
described underDPSErrorCode in Client Library Reference Manual:

dps_err_invalidAccess An attempt was made to receive output from a
context created by another client. Contexts send
their output only to the original creator. If the
application tries to get output from a context created
by another client—for example, by calling a wrap
that returns a result—this error is reported.

dps_err_encodingCheck An attempt was made to change name or program
encoding to unacceptable values. This error can
occur when changing name encoding for a context
created by another client or a context created in a
space that was created by another client. Such
contexts must have string name encoding
(dps_strings).

dps_err_closedDisplay An attempt was made to send PostScript language
code to a context whose display is closed.

dps_err_deadContext An attempt was made to get output from a zombie
context (a context that has died in the server but still
has its X resources active).

dps_err_recursiveWait An event handler calledDPSWaitContext or a
wrap that returns a value; see “Wrap
Considerations” on page CLX-102 for more
information

Client Library Supplement for X 6 X-Specific Data and Procedures CLX- 125

C
L

X

6.1.2 Status Event Masks

The status event types supported in Display PostScript are shown in Table 3. The
first column shows the status event type that is reported by the server. The second
column shows the associated single-bit status mask values that can be combined
with logical OR to set a context’s status mask. The third column describes the
status event.

For more information on status events, see section 3.4 on page CLX-102.

6.1.3 Types and Global Variables

DPSEventDelivery typedef enum {

dps_event_pass_through,

dps_event_internal_dispatch,

dps_event_query

} DPSEventDelivery;

DPSEventDelivery provides the possible options forXDPSSetEventDelivery .

This enumeration is not available in early versions of the Client Library.

DPSLastUserObjectIndex long int DPSLastUserObjectIndex;

DPSLastUserObjectIndex is a global variable containing the last user object
index assigned for this application. This variable should be treated as read-only.
For more information about user object indices, seeDPSNewUserObjectIndex
on page CLX-128 and “User Object Indices” on page CLX-91.

Table 3 Status events

Status Event Mask ValueStatus Description

PSRUNNING PSRUNNINGMASK Context is runnable.

PSNEEDSINPUT PSNEEDSINPUTMASK Context needs input to continue running.

PSZOMBIE PSZOMBIEMASK Context is dead, but its X resources remain.

PSFROZEN PSFROZENMASK Context was frozen by PostScript language
program.

PSSTATUSERROR — Could not reply to status request.

CLX-126 Client Library Supplement for X 15 April 1993

 XDPSStatusProc typedef void (*XDPSStatusProc)(/*

DPSContext ctxt,

int code */);

This is a procedure type for defining the callback procedure that handles status
events for the client. The procedure will be called with two parameters: the
context it was registered with and the status code derived from the event. For
more information about status events, seeXDPSRegisterStatusProc on page
CLX-134 and “Status Event Masks” on page CLX-124.

6.2 Procedures

This section contains descriptions of the system-specific procedures in the
<DPS/dpsXclient.h> header file, listed alphabetically.

DPSChangeEncoding void DPSChangeEncoding(ctxt, newProgEncoding,

newNameEncoding)

DPSContext ctxt;

DPSProgramEncoding newProgEncoding;

DPSNameEncoding newNameEncoding;

DPSChangeEncoding changes one or both of the context’s encoding
parameters. Supported conversions are described in Table 2 on page PG-110. See
Client Library Reference Manual for definitions ofDPSNameEncoding and
DPSProgramEncoding.

DPSContextFromContextID DPSContext DPSContextFromContextID(ctxt, cid, textProc,

errorProc)

DPSContext ctxt;

ContextPSID cid;

DPSTextProc textProc;

DPSErrorProc errorProc;

DPSContextFromContextID creates aDPSContextRec and returns a
DPSContext handle for a forked context; it returnsNULL if it is unable to create
these data structures.

The application must call this procedure before attempting to communicate with
a forked context.DPSContextFromContextID creates the client-side data
structures for the context and associates them with the server-side structures
previously created by thefork operator.cid is the context identifier (of typelong
int) that is assigned to the forked context by the PostScript interpreter.ctxt is the

Client Library Supplement for X 6 X-Specific Data and Procedures CLX- 127

C
L

X

handle of the context that created the forked context; itsDPSContextRec will be
used as a model for theDPSContextRec of the forked context, as described
below.

If a DPSContextRec has already been created forcid, its handle is returned by
DPSContextFromContextID . Otherwise, a new context record is created
according to the following rules:

• If supplied, thetextProc anderrorProc arguments are used for the forked
context.

• If textProc or errorProc areNULL, the missing values are copied from the
DPSContextRec of ctxt.

• The chaining pointers for the forked context are set toNULL.

• All other fields in the newDPSContextRec are copied fromctxt.

DPSCreateTextContext DPSContext DPSCreateTextContext(textProc, errorProc)

DPSTextProc textProc;

DPSErrorProc errorProc;

DPSCreateTextContext creates a text context and returns itsDPSContext
handle. When this handle is passed as the argument to a Client Library procedure,
all input to the context is passed totextProc. If the input is PostScript language in
a binary encoding, the input is converted to ASCII encoding before being passed
to textProc. errorProc is used to report any errors (such as
dps_err_nameTooLong) resulting from converting binary encodings to ASCII
encoding.textProc is responsible for dealing with errors resulting from handling
the text, such as file system or I/O errors.

DPSDefaultTextBackstop void DPSDefaultTextBackstop(ctxt, buf, count)

DPSContext ctxt;

char *buf;

unsigned count;

DPSDefaultTextBackstop is the text backstop procedure automatically
installed by Display PostScript. Since it is of typeDPSTextProc, you may use it
as your contexttextProc. The text backstop procedure writes text tostdout and
flushesstdout.

CLX-128 Client Library Supplement for X 15 April 1993

DPSDestroyContext void DPSDestroyContext(ctxt)

DPSContext ctxt;

DPSDestroyContext is as defined inClient Library Reference Manual, except
as it pertains to shared contexts.

Both the client and the server are affected by this procedure. On the client side,
DPSDestroyContext destroys theDPSContextRec. On the server side, it
destroys the PostScript execution context and the X resource associated with it.
After a call toDPSDestroyContext , theDPSContext handle forctxt is no
longer valid.

If the context is a shared context (that is, aDPSContextRec allocated for a
context created by another client), only theDPSContextRec is destroyed; the
interpreter context and resource are unchanged.

For text contexts,DPSDestroyContext destroys theDPSContextRec.

DPSDestroySpace void DPSDestroySpace(spc)

DPSSpace spc;

DPSDestroySpace is as defined inClient Library Reference Manual except for
shared spaces.

For spaces created by the client, this procedure destroys the space and the X
resource associated with it. PostScript execution contexts that use this space are
also destroyed, along with their X resources andDPSContextRec records.
Finally, theDPSSpaceRec is destroyed.

If the space is a shared space (aDPSSpaceRec allocated by another client), the
space and the X resource are not destroyed. Only theDPSSpaceRec is
destroyed, along with anyDPSContextRec records for contexts associated with
this space. See section 4.7 on page CLX-112 for a discussion of shared resources.

If the client that created the space destroys it and there are other clients sharing it,
the space is destroyed and the sharing clients will experience unpredictable
results.

DPSNewUserObjectIndex long int DPSNewUserObjectIndex();

DPSNewUserObjectIndex returns a new user object index. The Client Library
is the sole allocator of new user object indices. The application should not
attempt to compute them from a previously obtained index. Because user object

Client Library Supplement for X 6 X-Specific Data and Procedures CLX- 129

C
L

X

indices are dynamic, they should not be used as numeric values for computation
or saved in long-term storage such as a file. See “User Object Indices” on page
CLX-97 for more information.

XDPSContextFromSharedID DPSContext XDPSContextFromSharedID(dpy, cid, textProc,

errorProc)

Display *dpy;

ContextPSID cid;

DPSTextProc textProc;

DPSErrorProc errorProc;

XDPSContextFromSharedID creates aDPSContextRec for a context that was
created by another client.

cid specifies the context. (cid is the context identifier assigned by the PostScript
interpreter, not the X resource ID.)dpy is theDisplay that both clients are
connected to.textProc anderrorProc are the context text and error handlers for
the shared context. For information on sharing resources, see section 4.7 on page
CLX-112.

XDPSContextFromXID DPSContext XDPSContextFromXID(dpy, xid)

Display *dpy;

XID xid;

XDPSContextFromXID gets the context record for the given X resource ID on
dpy. It returnsNULL if xid is not valid.

CLX-130 Client Library Supplement for X 15 April 1993

XDPSCreateContext DPSContext XDPSCreateContext(dpy, drawable, gc, x, y,

eventmask,grayramp, ccube, actual,

extProc, errorProc, space)

Display *dpy;

Drawable drawable;

GC gc;

int x;

int y;

unsigned int eventmask;

XStandardColormap *grayramp;

XStandardColormap *ccube;

int actual;

DPSTextProc textProc;

DPSErrorProc errorProc;

DPSSpace space;

XDPSCreateContext creates a context with a customized colormap; it returns
NULL if there is any error.

dpy, drawable, gc, x, y, textProc, errorProc, andspace are the same as for
XDPSCreateSimpleContext . eventmask is reserved for future extensions and
should be passed as zero.

The colormap specified ingrayramp andccube must contain a range of
uniformly distributed colors.grayramp specifies the factors needed to compute a
pixel value for a particular gray level.grayramp is required.ccube specifies the
factors needed to compute a pixel value for a particular RGB color.ccube is
optional; if it is passed asNULL, rendering will be done in shades of gray. The
colormap specified inccube must be the same as the one specified ingrayramp.
actual specifies the upper limit of the number of additional RGB colors the
application plans to request, beyond those specified inccube andgrayramp.

The following restrictions apply:

• drawable andgc must be on the same screen.

• drawable andgc must have the same depthVisual.

• If the drawable is aWindow, any colormaps specified must have the same
Visual.

• grayramp must be specified;ccube is optional; both must be valid.

See 3.2, “Creating a Context,” for additional information.

Client Library Supplement for X 6 X-Specific Data and Procedures CLX- 131

C
L

X

XDPSCreateSimpleContext DPSContext XDPSCreateSimpleContext(dpy, drawable, gc, x, y,

textProc, errorProc, space)

Display *dpy;

Drawable drawable;

GC gc;

int x;

int y;

DPSTextProc textProc;

DPSErrorProc errorProc;

DPSSpace space;

XDPSCreateSimpleContext creates a context with the default colormap; it
returnsNULL if there is any error.

The procedure creates a context associated withdpy, drawable, andgc.

x andy are offsets from thedrawable origin to the PostScript device space origin
in pixels.

textProc points to the procedure that will be called to handle text output from the
context.errorProc points to the procedure that will be called to handle errors
reported by the context.space determines the private VM of the new context. A
NULL space causes a new one to be created.

The following restrictions apply:

• drawable andgc must be on the same screen.

• drawable andgc must have the same depthVisual.

See 3.2, “Creating a Context,” on page CLX-85 for additional information.

XDPSDispatchEvent Bool XDPSDispatchEvent (event)

XEvent *event;

XDPSDispatchEvent checks whether an event is a Display PostScript event
and, if so, dispatches it to the appropriate status or output handler, as follows:

• If the event is not a Display PostScript event,XDPSDispatchEvent returns
False and does nothing else.

• If the event is a Display PostScript event,XDPSDispatchEvent determines
the context from the event, calls the context’s status or output handler, and
returnsTrue.

This procedure is not available in early versions of the Client Library.

CLX-132 Client Library Supplement for X 15 April 1993

XDPSFindContext DPSContext XDPSFindContext(dpy, cid)

Display *dpy;

long int cid;

XDPSFindContext returns theDPSContext handle of a context given its
context identifier,cid. It returnsNULL if the context identifier is invalid.

XDPSGetContextStatus int XDPSGetContextStatus(ctxt)

DPSContext ctxt;

XDPSGetContextStatus returns the status ofctxt. This procedure does not alter
the mask established forctxt by XDPSSetStatusMask . For information on
status events, see section 3.4 on page CLX-102 and section 6.1 on page
CLX-124.

XDPSGetDefaultColorMaps void XDPSGetDefaultColorMaps (dpy, screen, drawable,

colorcube, grayramp)

Display *dpy;

Screen *screen;

Drawable drawable;

XStandardColormap *colorcube;

XStandardColormap *grayramp;

XDPSGetDefaultColorMaps returns the colormaps used in creating a simple
context. The display must be specified.

• If screen is NULL anddrawable is None, the colormaps are retrieved for the
default screen of the display.

• If screen is NULL anddrawable is notNone, the colormaps are retrieved for
the drawable’s screen.

• If screen is notNULL, the colormaps are retrieved for that screen.

Eithercolorcube or grayramp may beNULL, indicating that the colormap is not
needed.

This procedure is not available in early versions of the Client Library.

Client Library Supplement for X 6 X-Specific Data and Procedures CLX- 133

C
L

X

 XDPSIsDPSEvent Bool XDPSIsDPSEvent (event)

XEvent *event;

XDPSIsDPSEvent returnsTrue if the event is a Display PostScript event and
False otherwise.

This procedure is not available in early versions of the Client Library.

 XDPSIsOutputEvent Bool XDPSIsOutputEvent (event)

XEvent *event;

XDPSIsOutputEvent returnsTrue if event is a Display PostScript output event
andFalse otherwise.

The contents of an output event are not defined. IfXDPSIsOutputEvent returns
True, the event must be passed toXDPSDispatchEvent . If the application does
not pass the event toXDPSDispatchEvent , the results are undefined.

This procedure is not available in early versions of the Client Library.

XDPSIsStatusEvent Bool XDPSIsStatusEvent (event, ctxt, status)

XEvent *event;

DPSContext *ctxt;

int *status;

XDPSIsStatusEvent returnsTrue if event is a Display PostScript status event
andFalse otherwise. If the event is a status event,ctxt andstatus are set to that
event’s context and status. Eitherctxt or status can beNULL if the information is
not needed.

The contents of a status event is not defined; the returned context and status
values are the only way to extract the information from the event.

This procedure is not available in early versions of the Client Library.

CLX-134 Client Library Supplement for X 15 April 1993

XDPSRegisterStatusProc XDPSStatusProc XDPSRegisterStatusProc(ctxt, proc)

DPSContext ctxt;

XDPSStatusProc proc;

XDPSRegisterStatusProc registers a status event handler,proc, to be called
when a status event is received by the client for the context specified byctxt. The
status event handler may be called by Xlib any time the client gets events or
checks for events.

XDPSStatusProc replaces the previously registered status event handler for the
context, if any.proc handles only status events generated byctxt; if the
application has more than one context,XDPSRegisterStatusProc must be
called separately for each context.

XDPSRegisterStatusProc returns the old status procedure when a new one is
registered.

In early versions of the Client Library, this procedure returnsvoid.

XDPSSetEventDelivery DPSEventDelivery XDPSSetEventDelivery (dpy, newMode)

Display *dpy;

DPSEventDelivery newMode;

An application can callXDPSSetEventDelivery to change or query how the
Client Library delivers events.

XDPSSetEventDelivery always returns the previous event delivery mode for
the specified display.

• If newMode is dps_event_query, XDPSSetEventDelivery does nothing
else.

• If newMode is dps_event_internal_dispatch, the Client Library dispatches
events internally without passing them to the application. This is the default
value.

• If newMode is dps_event_pass_through, the Client Library stops
dispatching events internally and passes them through to the application as
normal X events.

This procedure is not available in early versions of the Client Library.

Client Library Supplement for X 6 X-Specific Data and Procedures CLX- 135

C
L

X

XDPSSetStatusMask void XDPSSetStatusMask(ctxt, enableMask, disableMask,

nextMask)

DPSContext ctxt;

unsigned long enableMask, disableMask, nextMask;

XDPSSetStatusMask sets the status mask for the context, as follows:

• enableMask specifies status events for which continuing notification to the
client is requested.

• disableMask specifies status events for which the client does not want to be
notified.

• nextMask specifies status events for which the client wants to be notified of
the next occurrence only. SettingnextMask is equivalent to setting
enableMask for a status event and, after being notified of the next occurrence,
settingdisableMask for that event.

A given status event type may be set in only one of the three status masks. If an
event is set in more than one mask, a protocol error (Value) is generated and the
context is left unchanged. For more information on status events, see sections 3.4
and 6.1.

XDPSSpaceFromSharedID DPSSpace XDPSSpaceFromSharedID(dpy, sxid)

Display *dpy;

SpaceXID sxid;

XDPSSpaceFromSharedID creates aDPSSpaceRec for the space identified
by an X resource ID,sxid, that was created by another client.dpy is theDisplay
that both clients are connected to.XDPSSpaceFromSharedID returnsNULL if
sxid is not valid.

XDPSSpaceFromXID DPSSpace XDPSSpaceFromXID(dpy, xid)

Display *dpy;

XID xid;

XDPSSpaceFromXID gets the space record for the given X resource ID ondpy.
It returnsNULL if xid is not valid.

CLX-136 Client Library Supplement for X 15 April 1993

XDPSUnfreezeContext void XDPSUnfreezeContext(ctxt)

DPSContext ctxt;

XDPSUnfreezeContext notifies a context that is in thePSFROZEN state to
resume execution. Attempting to unfreeze a context that is not frozen has no
effect.

XDPSXIDFromContext XID XDPSXIDFromContext(Pdpy, ctxt)

Display **Pdpy;

DPSContext ctxt;

XDPSXIDFromContext gets the X resource ID for the given context record and
returns itsDisplay in the location pointed to byPdpy. Pdpy is set toNULL if ctxt
is not a valid context.

XDPSXIDFromSpace XID XDPSXIDFromSpace(Pdpy, spc)

Display **Pdpy;

DPSSpace spc;

XDPSXIDFromSpace gets the X resource ID for the given space record and
returns itsDisplay in the location pointed to byPdpy. Pdpy is set toNULL if spc
is not a valid space.

Client Library Supplement for X 7 X-Specific Custom PostScript Operators CLX- 137

C
L

X

7 X-Specific Custom PostScript Operators

This section describes the custom PostScript operators for the Display PostScript
system extension to the X Window System. The operators are organized
alphabetically by operator name. Each operator description is presented in the
following format:

operator operand 1 operand 2 ... operand n operator result 1 ... result m

Detailed explanation of the operator.

Errors A list of the errors that this operator might execute.

At the head of an operator description,operand1 throughoperandn are the
operands that the operator requires, withoperandn being the topmost element on
the operand stack. The operator pops these objects from the operand stack and
consumes them. After executing, the operator leaves the objectsresult1 through
resultm on the stack, withresultm being the topmost element.

The notation ‘–’ in the operand position indicates that the operator expects no
operands; a ‘–’ in the result position indicates that the operator returns no results.

Error conditions include the following:

rangecheck Invalid match: either thedrawable andgc have different
depths or they don’t have aVisual that matches the colormap
associated with the context.

stackunderflow Not enough operands on the operand stack.

typecheck Invalid X resource ID.

undefined The device associated with the context is not a display device.

 clientsync – clientsync –

Theclientsync operator synchronizes the application with the current context.
clientsync notifies the current context to stop executing, sets the context status
to FROZEN, and causes aPSFROZEN status event to be generated. To resume
execution, call theXDPSUnfreezeContext procedure.

For an example of the use ofclientsync , see section 4.8.2 on page CLX-115.

currentXgcdrawable – currentXgcdrawable gc drawable x y

ThecurrentXgcdrawable operator returns the Xgc, drawable, and offset from
the origin of thedrawable to the device space origin for the current context.
Results returned by this operator can be input tosetXgcdrawable . The returned
gc is aGContext identifier, not aGC pointer.

CLX-138 Client Library Supplement for X 15 April 1993

Errors: undefined

currentXgcdrawablecolor – currentXgcdrawablecolor gc drawable x y colorinfo

ThecurrentXgcdrawablecolor operator is similar to the
currentXgcdrawable operator, except that it also returns an array of 12 integers
describing the color cube, gray ramp, and other color variables used for the
context. The returnedgc is aGContext identifier, not aGC pointer. Thecolorinfo
array, described in Table 4, has the form shown in Example 13.

Example 13 Form of colorinfo array

[maxgrays graymult firstgray maxred redmult maxgreen

 greenmult maxblue bluemult firstcolor colormap actual]

Table 4 Description ofcolorinfo array values

Value Description

maxgrays Maximum number of gray values. Equivalent tored_max field of
XStandardColormap for the gray ramp.

graymult Scale factor to compute gray pixel. Equivalent tored_mult field
of XStandardColormap for the gray ramp.

firstgray First gray pixel value. Equivalent tobase_pixel field of
XStandardColormap for the gray ramp.

maxred Maximum number of red values. Equivalent tored_max field of
XStandardColormap.

redmult Scale factor to compute color pixel. Equivalent tored_mult field
of XStandardColormap.

maxgreen Maximum number of green values. Equivalent togreen_max
field of XStandardColormap.

greenmult Scale factor to compute color pixel. Equivalent togreen_mult
field of XStandardColormap.

maxblue Maximum number of blue values. Equivalent toblue_max field
of XStandardColormap.

bluemult Scale factor to compute color pixel. Equivalent toblue_mult field
of XStandardColormap.

Client Library Supplement for X 7 X-Specific Custom PostScript Operators CLX- 139

C
L

X

Errors: undefined

 currentXoffset – currentXoffset x y

ThecurrentXoffset operator returns thex andy coordinates representing the
offset from the origin of thedrawable to the device space origin for the current
context. This operator returns a subset of the variables returned by
currentXgcdrawable . Its result values can be input tosetXoffset .

Errors: undefined

setXgcdrawable gc drawable x y setXgcdrawable –

ThesetXgcdrawable operator sets the Xgc, drawable, and offset from the
origin of thedrawable to the device space origin for the current context. The
specified values override any existing values.

Thegc operand is aGContext identifier, not aGC pointer. Use
XGContextFromGC to extract aGContext from aGC.

To temporarily change the values specified forsetXgcdrawable , executegsave
before the operator and follow it withgrestore .

Errors: rangecheck, stackunderflow, typecheck, undefined

setXgcdrawablecolor gc drawable x y colorinfo setXgcdrawablecolor –

ThesetXgcdrawablecolor operator changesgc, drawable, offset, andcolorinfo
for the context. Thecolorinfo argument is described under
currentXgcdrawablecolor .

Thegc operand is aGContext identifier, not aGC pointer. Use
XGContextFromGC to extract aGContext from aGC.

To temporarily change the values specified forsetXgcdrawablecolor , execute
gsave before the operator and follow it withgrestore .

Errors: rangecheck, stackunderflow, typecheck, undefined

firstcolor First color pixel value. Equivalent tobase_pixel field of
XStandardColormap.

colormap The colormap that these pixel values are allocated in.

actual The upper limit of additional RGB colors, as in theactual
argument toXDPSCreateContext .

Table 4 Description ofcolorinfo array values (Continued)

Value Description

CLX-140 Client Library Supplement for X 15 April 1993

setXoffset x y setXoffset –

ThesetXoffset operator sets the default origin for the user space of the current
context. This operator is a subset ofsetXgcdrawable .

Errors: stackunderflow, undefined

setXrgbactual red green blue setXrgbactual bool

ThesetXrgbactual operator attempts to allocate a new entry in the context’s
colormap. It takes three floating-point numbers between 0.0 and 1.0 to specify the
RGB color, as withsetrgbcolor . The operator returnstrue if the color was
successfully allocated in the colormap; it returnsfalse if the color cannot be
allocated or if an error occurs. If the operator returnstrue, future requests for the
specified color will be rendered using the allocated colormap entry.

ExecutingsetXrgbactual is a way of ensuring that the color you request is
actually allocated, not dithered. Colors specified bysetXrgbactual do not count
against the number ofactual colors that are allocated automatically; see “Using
XDPSCreateContext” in 3.2, “Creating a Context.”setXrgbactual may be
called even if the context was created withactual set to zero.

setXrgbactual does not change the graphics state in any way; to paint with the
specified color, executesetrgbcolor .

Errors: stackunderflow, typecheck, undefined

7.1 Single-Operator Procedures

Client Library Reference Manual explains and lists a number of single-operator
procedures in section 9, “Single-Operator Procedures.” The X Window System
implementation of the Display PostScript system provides some additional
procedures for the X-specific PostScript operators.

The procedure declarations listed below can be found in<DPS/dpsops.h>.
<DPS/psops.h> contains the analogous definitions without thectxt argument.

Note: Some early releases of the Display PostScript system did not include these
operators.

Example 14 Procedure declarations for X-specific PostScript operators

C language code:

extern void DPSclientsync(/* DPSContext ctxt; */);

extern void DPScurrentXgcdrawable(/* DPSContext ctxt;

int *gc, *draw, *x, *y; */);

extern void DPScurrentXgcdrawablecolor(/* DPSContext ctxt;

int *gc, *draw, *x, *y, colorInfo[]; */);

extern void DPScurrentXoffset(/* DPSContext ctxt;

int *x, *y; */);

Client Library Supplement for X 7 X-Specific Custom PostScript Operators CLX- 141

C
L

X

extern void DPSsetXgcdrawable(/* DPSContext ctxt;

int gc, draw, x, y; */);

extern void DPSsetXgcdrawablecolor(/* DPSContext ctxt;

int gc, draw, x, y, colorInfo[]; */);

extern void DPSsetXoffset(/* DPSContext ctxt;

int x, y; */);

extern void DPSsetXrgbactual(/* DPSContext ctxt;

float r, g, b; int *success; */);

CLX-142 Client Library Supplement for X 15 April 1993

