
Adobe Systems Incorporated

Display PostScript System

pswrap Reference Manual

15 April 1993

Adobe Systems Incorporated

Adobe Developer Technologies
345 Park Avenue
San Jose, CA 95110
http://partners.adobe.com/

Copyright 1988-1993 by Adobe Systems Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of the publisher. Any software referred to herein is furnished under license and may
only be used or copied in accordance with the terms of such license.

PostScript, the PostScript logo, Display PostScript, Sonata, and the Adobe logo are trademarks of
Adobe Systems Incorporated which may be registered in certain jurisdictions. Serifa is a registered
trademark of Fundicion Tipografica Neufville S.A. X Window System is a trademark of the
MassachusettsInstitute of Technology. Other brand or product names are the trademarks or registered
trademarks of their respective holders.

This publication and the information herein is furnished AS IS, is subject to change without notice, and
should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems
Incorporated assumes no responsibility or liability for any errors or inaccuracies, makes no warranty
of any kind (express, implied or statutory) with respect to this publication, and expressly disclaims any
and all warranties of merchantability, fitness for particular purposes and noninfringement of third
party rights.

PSW-iii

Contents

1 About This Manual PSW-7

2 About pswrap PSW-8

3 Using pswrap PSW-9
Command-Line Options PSW-9
#line Directives PSW-10

4 Writing a Wrap PSW-11
The Wrap Definition PSW-11
Comments PSW-12
The Wrap Body PSW-12
Arguments PSW-14
Input Arguments PSW-14
Output Arguments PSW-15

5 Declaring Input Arguments PSW-18
Sending Boolean Values PSW-18
Sending User Object Values PSW-18
Sending Numbers PSW-20
Sending Characters PSW-20
Sending Arrays of Numbers or Booleans PSW-22
Sending a Series of Numeric or Boolean Values PSW-23
Specifying the Context PSW-26

6 Declaring Output Arguments PSW-27
Receiving Numbers PSW-28
Receiving Boolean Values PSW-28
Receiving a Series of Output Values PSW-29
Receiving Characters PSW-30
Communication and Synchronization PSW-31

7 Syntax PSW-32
Syntactic Restrictions PSW-33
Clarifications PSW-33

Index
See Global Index to the Display PostScript Reference Manuals

PSW-iv Contents

PSW-v

P
S

W

List of Examples

Example 1 Sample wrap definition PSW-11
Example 2 Comments in a wrap PSW-12
Example 3 Nested composite objects in a wrap PSW-13
Example 4 Wrap with input arguments PSW-14
Example 5 Wrap with output arguments PSW-15
Example 6 Output argument as long int PSW-16
Example 7 Wrap with a userobject argument PSW-19
Example 8 Wrap that defines a user object PSW-19
Example 9 Using a text argument as a literal name PSW-20
Example 10 Using a text argument as a string PSW-21
Example 11 Using a text argument as an executable name PSW-21
Example 12 Wrap with an array argument PSW-22
Example 13 Wrap with a variable-length array argument PSW-22
Example 14 Using array elements within a wrap PSW-23
Example 15 Examples of numstrings in wrap definitions PSW-25
Example 16 Wrap with a numstring argument PSW-25
Example 17 Wrap that declares a context PSW-26
Example 18 Returning output values more than once PSW-27
Example 19 Wrap with a boolean output argument PSW-28
Example 20 Returning a series of output values PSW-29

PSW-vi List of Examples

PSW-7

P
S

W

pswrap Reference Manual

1 About This Manual

pswrap Reference Manual is a guide to thepswrap translator. It tells you how to
usepswrap to create C-callable procedures that contain PostScriptTM language
code.

Section 2, “About pswrap,” introduces thepswrap translator.

Section 3, “Using pswrap,” tells you how to runpswrap, and documents the
options in thepswrap command line.

Section 4, “Writing a Wrap,” tells you how to write wrap definitions forpswrap.

Section 5, “Declaring Input Arguments,” tells you how to declare input
arguments.

Section 6, “Declaring Output Arguments,” tells you how to declare output
arguments.

Section 7, “Syntax,” explains the syntax used in wrap definitions.

Appendix lists error messages from thepswrap translator.

PSW-8 pswrap Reference Manual 15 April 1993

2 About pswrap

Thepswrap translator provides a natural way for an application developer or
toolkit implementor to compose a package of C-callable procedures that send
PostScript language code to the PostScript interpreter. These C-callable
procedures are known aswrapped procedures or wraps. A wrap is a procedure
that consists of a C declaration with a PostScript language body. Awrap body is
the PostScript language program fragment in a wrap.

Here’s howpswrap fits into the Display PostScript system:

• You write the PostScript language programs required by your application,
using thepswrap syntax to define a C-callable procedure and specify input
and output arguments.

• You runpswrap to translate these PostScript language programs into wrapped
procedures.

• You compile and link these wraps with the application program.

• When a wrap is called by the application, it sends encoded PostScript
language to the PostScript interpreter and receives the values returned by the
interpreter.

A pswrap source file associates PostScript language code with declarations of C
procedures;pswrap writes C source code for the declared procedures, in effect
wrapping C code around the PostScript language code. Wrapped procedures can
take both input and output arguments.

• Input arguments are values a wrap sends to the PostScript interpreter as
PostScript objects.

• Output arguments are pointers to variables where the wrap stores values
returned by the PostScript interpreter.

Wraps are the most efficient way for an application to communicate with the
PostScript interpreter.

pswrap Reference Manual 3 Using pswrap PSW- 9

P
S

W

3 Using pswrap

The form of thepswrap command line (UNIX-specific) is:

pswrap [-apr] [-o outputCfile] [-h outputHfile] [-s maxstring]

[inputFile]

where square brackets [] indicate optional items.

3.1 Command-Line Options

Thepswrap command-line options are as follows:

inputFile A file that contains one or more wrap definitions.pswrap transforms the
definitions ininputFile into C procedure definitions. If no input file is specified,
the standard input (which can be redirected from a file or pipe) is used. The input
file can include text other than procedure definitions.pswrap converts procedure
definitions to C procedures and passes the other text through unchanged.
Therefore, it is possible to intersperse C-language source code with wrap
definitions in the input file.

Note: Although C code is allowed in apswrap input file, it is not allowed within
a wrap body. In particular, no CPP macros (for example,#define) are allowed
inside a wrap.

–a Generates ANSI C procedure prototypes for procedure declarations in
outputCfile and, optionally,outputHfile. The–a option allows compilers that
recognize the ANSI C standard to do more complete typechecking of parameters.
The–a option also causespswrap to generateconst declarations.

Note: ANSI C procedure prototype syntax is not recognized by most non-ANSI C
compilers, including many compilers based on the Portable C Compiler. Use the
–a option only in conjunction with a compiler that conforms to the ANSI C
Standard.

–h outputHFile Generates a header file that containsextern declarations for non-static wraps.
This file can be used in#include statements in modules that use wraps. If the–a
option is specified, the declarations in the header file are ANSI C procedure
prototypes. If the–h option is omitted, a header file is not produced.

-o outputCFile Specifies the file to which the generated wraps and passed-through text are
written. If omitted, the standard output is used. If the–a option is also specified,
the procedure declarations generated bypswrap are in ANSI C procedure
prototype syntax.

–p Specifies that strings passed by wraps are padded so that each data object begins
on a long-word (4-byte) boundary. This option allows wraps to run on
architectures that restrict data alignment to 4-byte boundaries and improves
performance on some other architectures.

PSW-10 pswrap Reference Manual 15 April 1993

–r Generates reentrant code for wraps shared by more than one process (as in shared
libraries). Reentrant code can be called recursively or by more than one thread.
Wraps generated without this option use local static variables, which can be
overwritten by recursive calls or multiple threads. Since those variables need to
be reused by reentrant wraps, the–r option causes local automatic variables to be
used instead. The–r option causespswrap to generate extra code, use it only
when necessary.

–s maxstring Sets the maximum allowable length of a PostScript string object or PostScript
hexadecimal string object in the wrap body input. A syntax error is reported if a
string is not terminated with) or> within maxstring characters.maxstring cannot
be set lower than 80; the default is 200.

3.2 #line Directives

The C code thatpswrap generates for wrapped procedures usually contains more
lines than the input wrap body, so lines in the output file do not correspond to
lines in the input file. This circumstance could make bugs that originate in the
wrap body difficult to fix with a source-code debugger because the debugger
displays C code from the output wrapped procedures, not PostScript language
code from the input file.

pswrap solves the problem by using#line directives to record input file line
numbers along with output file line numbers in the output file. When you use a C
source code debugger, the directives refer the debugger to the correct line from
the input file.

Note: Do not use the standard input and standard output streams as pipes to or from
pswrap, because the resulting #line directives will be incomplete. pswrap expects
both the input and output files to be named on the command line. If no input file is
named, the references to input file line numbers will contain no filename; if the
output file is not named, the name of the C source file produced by pswrap will be
missing.

pswrap writes diagnostic output to the standard error if there are errors in the
command line or in the input. Ifpswrap encounters errors during processing, it
reports the error and exits with a nonzero termination status.

pswrap Reference Manual 4 Writing a Wrap PSW- 11

P
S

W

4 Writing a Wrap

Example 1 is a sample wrap definition. It declares thePSWGrayCircle
procedure, which creates a solid gray circle with a radius of 5.0 centered at (10.0,
10.0).

Example 1 Sample wrap definition

Wrap definition:

defineps PSWGrayCircle()

newpath

10.0 10.0 5.0 0.0 360.0 arc

closepath

0.5 setgray

fill

endps

Procedure call:

PSWGrayCircle();

PostScript language code equivalent:

newpath

10.0 10.0 5.0 0.0 360.0 arc

closepath

0.5 setgray

fill

4.1 The Wrap Definition

Following are the rules for defining a wrapped procedure. Each wrap definition
consists of four parts:

• defineps begins the definition. It must appear at the beginning of a line
without any preceding spaces or tabs.

• Declaration of the C-callable procedure is the name of the procedure
followed by a list in parentheses of the arguments it takes. The arguments are
optional. Parentheses are required even for a procedure without arguments.
(Wraps do not return values; they are implicitly declaredvoid.)

• Wrap body is a PostScript language program fragment, which is sent to the
PostScript interpreter. It includes a series of PostScript operators and operands
separated by spaces, tabs, and newline characters.

• endps ends the definition. Likedefineps, endps must appear at the beginning
of a line.

PSW-12 pswrap Reference Manual 15 April 1993

By default, wrap definitions introduce external (that is, global) names that can be
used outside the file in which the definition appears. To introduce private (local)
procedures, declare the wrapped procedure as static. For example, the
PSWGrayCircle wrap in Example 1 can be made static by substituting the
following statement for the first line:

defineps static PSWGrayCircle()

Note: It is helpful for the application to give wraps names that identify them as such;
for example,PSWDrawBox , PSWShowTitle , PSWDrawSlider , and so on.

4.2 Comments

C comments can appear anywhere outside a wrap definition. PostScript language
comments can appear anywhere after the procedure is declared and before the
definition ends.pswrap strips PostScript language comments from the wrap
body. Comments cannot appear within PostScript string objects.

Example 2 Comments in a wrap

Wrap definition:

/* This is a C comment */

defineps PSWNoComment()

(/* This is not a comment */) show

(% Nor is this.) length

% This is a PS comment

endps

Wraps cannot be used to send PostScript language comments that contain
structural information (%% and%!). Use another Client Library facility, such as
DPSWriteData , to send comments.

4.3 The Wrap Body

pswrapaccepts any valid PostScript language code as specified in thePostScript
Language Reference Manual, Second Edition. If the PostScript language code in
a wrap body includes any of the following symbols, the opening and closing
marks must balance:

{ } Braces (to delimit a procedure)

[] Square brackets (to define an array)

() Parentheses (to enclose a string)

< > Angle brackets (to mark a hexadecimal string)

pswrap Reference Manual 4 Writing a Wrap PSW- 13

P
S

W

Parentheses within a string body must balance or be quoted with\ according to
standard PostScript language syntax.

Note: pswrap does not check a wrap definition for valid or sensible PostScript
language code.

pswrap attempts to wrap whatever it encounters. Everything between the closing
parenthesis of the procedure declaration and the end of the wrap definition is
assumed to be an element of the PostScript language unless it is part of a
comment or matches one of the wrap arguments.

Note: pswrap does not support the double slash (//) PostScript language syntax for
immediately evaluated names. See the PostScript Language Reference Manual,
Second Edition for more information about immediately evaluated names.

4.3.1 Execution Considerations

A wrap body executes as if the entire body were enclosed in an extra set of braces
and followed by theexec operator. In other words, the body is put into an
executable array which is then executed. This form of execution places a few
restrictions on wrap bodies:

• First, restore can be used in only two cases:

1. If the correspondingsave is executed in the same wrap

or

2. If restore is the last thing in the wrap and the wrap does not return any values

In cases other than these two, the executable array on the operand stack causes
an invalidrestore error.

• Second, literal composite objects within the wrap body are actually created
before any code in the body is executed. If the wrap body changes virtual
memory allocation mode, this change does not affect the literal composite
objects. For example, if the current VM allocation mode isfalse, the wrap in
Example 3 produces the output“true”, “ false”.

Example 3 Nested composite objects in a wrap

Wrap definition:

defineps PSWtestshared()

true setshared

3 string scheck ==

(abc) scheck ==

endps

PSW-14 pswrap Reference Manual 15 April 1993

The string“abc” was actually created before any code was executed, so the
change to VM allocation mode does not affect it. The same effect occurs with
nested executable array objects (sequences within { } braces).

4.4 Arguments

Argument names in the procedure header are declared using C types. For
instance, the following example declares two variables,x andy, of typelong int.

defineps PSWMyFunc(long int x, y)

In addition, the following holds true for arguments:

• There can be an unlimited number of input and output arguments.

• Input arguments must be listed before output arguments in the wrap header.

• Precede the output arguments, if any, with a vertical bar|.

• Separate arguments of the same type with a comma.

• Separate arguments of different types with a semicolon.

• A semicolon is optional before a vertical bar or a right parenthesis; these two
examples are equivalent:

defineps PSWNewFunc(float x, y; int a | int *i)

defineps PSWNewFunc(float x, y; int a;| int *i;)

4.5 Input Arguments

Input arguments describe values that the wrap converts to encoded PostScript
objects at runtime. When an element within the wrap body matches an input
argument, the value that was passed to the wrap replaces the element in the wrap
body. Input arguments represent placeholders for values in the wrap body. They
are not PostScript language variables (names). Think of them as macro
definitions that are substituted at runtime.

For example, thePSWGrayCircle procedure can be made more useful by
providing input arguments for the radius and center coordinates, as in Example 4.

Example 4 Wrap with input arguments

Wrap definition:

defineps PSWGrayCircle(float x, y, radius)

newpath

x y radius 0.0 360.0 arc

closepath

pswrap Reference Manual 4 Writing a Wrap PSW- 15

P
S

W

0.5 setgray

fill

endps

Procedure call:

PSWGrayCircle(25.4,17.7, 40.0);

PostScript language code equivalent:

newpath

25.4 17.7 40.0 0.0 360.0 arc

closepath

0.5 setgray

fill

The value of input argumentx replaces each occurrence ofx in the wrap body.
This version ofPSWGrayCircle draws a circle of a specified size at a specified
location.

4.6 Output Arguments

Output arguments describe values that PostScript operators return. For example,
the PostScript operatorcurrentgray returns the gray-level setting in the current
graphics state. PostScript operators place their return values on the top of the
operand stack. To return a value to the application, place the name of the output
argument in the wrap body at a time when the desired value is on the top of the
operand stack. In Example 5, the wrap gets the value returned bycurrentgray .

Example 5 Wrap with output arguments

Wrap definition:

defineps PSWGetGray(| float *level)

currentgray level

endps

Procedure call:

float aLevel;

PSWGetGray(&aLevel);

PostScript language code equivalent:

currentgray

% Pop current gray level off operand stack

% and store in aLevel.

Note: See section 11, “Runtime Support for Wrapped Procedures,” on page CL-54 of
the Client Library Reference Manual for a discussion about how pswrap uses
printobject to return results.

PSW-16 pswrap Reference Manual 15 April 1993

When an element within a wrap body matches an output argument in this way,
pswrap replaces the output argument with code that returns the top object on the
operand stack. For every output argument, the wrap performs the following
operations:

1. Pops an object off the operand stack.

2. Sends it to the application.

3. Converts it to the correct C data type.

4. Stores it at the place designated by the output argument.

Each output argument must be declared as a pointer to the location where the
procedure stores the returned value. To get along int from apswrap-generated
procedure, declare the output argument aslong int *, as in Example 6.

Example 6 Output argument as long int

Wrap definition:

defineps PSWCountExecStack(| long int *n)

countexecstack n

endps

Procedure call:

long int aNumber;

PSWCountExecStack(&aNumber);

PostScript language code equivalent:

countexecstack

% Pop count of objects on exec stack

% and return in aNumber.

To receive information from the PostScript interpreter, use only the syntax for
output arguments described here. Do not use operators that write to the standard
output (such as=, ==, print , or pstack). These operators send ASCII strings to
the application thatpswrap-generated procedures cannot handle.

For an operator that returns results, the operator description shows the order in
which results are placed on the operand stack, reading from left to right. When
you specify a result value in a wrap body, the result is taken from the top of the
operand stack. Therefore, the order in which wrap results are stated must be the
reverse of their order in the operator description.

For instance, the PostScript operator description forcurrentpoint returns two
values,x andy:

– currentpoint x y

pswrap Reference Manual 4 Writing a Wrap PSW- 17

P
S

W

Because they value is left on the top of the stack, the corresponding wrap
definition must be written

defineps PSWcurrentpoint (| float *x, *y)

currentpoint y x % Note: y before x.

endps

Note: Putting output parameters in the wrong order is one of the most common errors
made with the Display PostScript system.

PSW-18 pswrap Reference Manual 15 April 1993

5 Declaring Input Arguments

This section defines the data types allowed as input arguments in a wrap. Note
thatpswrap accepts onlypswrap data types as parameters. Although some
pswrap data types correspond to C data types, they really are not the same. Also,
not all defined C data types have correspondingpswrap data types (long long and
signed char, for example).

In the following list, square brackets indicate optional elements.

• DPSContext. If the wrap specifies a context, it must appear as the first input
argument. (DPSContext is a handle to the context record.)

• One of the followingpswrap data types (note theboolean anduserobject,
data types, which are exclusive topswrap):

boolean userobject

int unsigned [int]

short [int] unsigned short [int]

long [int] unsigned long [int]

float double

• An array of apswrap data type.

• A character string (char* or unsigned char*).

• A character array (char [] orunsigned char []). (The square brackets are part
of C syntax.)

A string (char*) passed as input can’t be more than 65,535 characters. An array
can’t contain more than 65,535 elements.

5.1 Sending Boolean Values

If an input argument is declared asboolean, the wrap expects to be passed a
variable of typeint. If the variable has a value of zero, it is translated to a
PostScript Boolean object with the valuefalse. Otherwise, it is translated to a
PostScript Boolean object with the valuetrue.

5.2 Sending User Object Values

Input parameters declared as typeuserobject should be passed as typelong int.
The value of auserobject argument is an index into theUserObjects array.

pswrap Reference Manual 5 Declaring Input Arguments PSW- 19

P
S

W

Whenpswrap encounters an argument of typeuserobject, it generates PostScript
language code to obtain the object associated with the index, as in Example 7.

Example 7 Wrap with a userobject argument

Wrap definition:

defineps PSWAccessUserObject(userobject x)

x

endps

Procedure call:

long int aUserObject;

...

/* assume aUserObject = 6 */

PSWAccessUserObject(aUserObject);

PostScript language code equivalent:

6 execuserobject

If the object is executable, it executes; if it’s not, it is pushed on the operand
stack.

If you want to pass the index of a user object without having it translated by
pswrap as described in Example 7, declare the argument to be of typelong int
rather than typeuserobject. Example 8 is a wrap that defines a user object.

Example 8 Wrap that defines a user object

Wrap definition:

defineps PSWDefUserObject(long int d)

d 10 dict defineuserobject

endps

Procedure call:

long int anIndex;

...

/* assume anlndex = 12 */

PSWDefUserObject(anlndex);

PostScript language code equivalent:

12 10 dict defineuserobject

PSW-20 pswrap Reference Manual 15 April 1993

5.3 Sending Numbers

An input argument declared as one of theint types is converted to a 32-bit
PostScript integer object before it is sent to the interpreter. A float ordouble input
argument is converted to a 32-bit PostScript real object. These conversions
follow the C conversion rules. Theint, long andshort types correspond to the
data sizes in the native C environment. On some architectures, a long integer or
double float is 64 bits, but the usable range of values is still 32 bits.

See The C Programming Language, Second Edition, B.W. Kernighan and D.M.
Ritchie (Englewood Cliffs, N.J., Prentice-Hall, 1988) orC: A Reference Manual,
Second Edition, Harbison and G. L. Steele, Jr. (Englewood Cliffs, N.J.,
Prentice-Hall, 1987).

Note: Since the PostScript language doesn’t support unsigned integers, unsigned
integer input arguments are converted to signed integers in the body of the wrap.

5.4 Sending Characters

An input argument composed of characters is treated as a PostScript name object
or string object. The argument can be declared as a character string or a character
array.

pswrap expects arguments that are passed to it as character strings (char* or
unsigned char*) to be null terminated(\0). Character arrays are not null
terminated. The number of elements in the array must be specified as an integer
constant or an input argument of typeint. In either case, the integer value must be
positive.

5.4.1 Text Arguments

A text argument is an input argument declared as a character string or character
array and converted to a single PostScript name object or string object.

The PostScript language interpreter does not process the characters of text
arguments. It assumes that any escape sequences (\n, \t, and so on) have been
processed before the wrap is called.

To makepswrap treat a text argument as a PostScript literal name object, precede
it with a slash, as in thePSWReadyFont wrap definition in Example 9. (Only
names and text arguments are preceded by a slash.)

Example 9 Using a text argument as a literal name

Wrap definition:

defineps PSWReadyFont(char *fontname; int size)

/fontname size selectfont

endps

pswrap Reference Manual 5 Declaring Input Arguments PSW- 21

P
S

W

Procedure call:

PSWReadyFont("Sonata", 6);

PostScript language code equivalent:

/Sonata 6 selectfont

To makepswrap treat a text argument as a PostScript string object, enclose it
within parentheses. ThePSWPutString wrap definition in Example 10, shows a
text argument,str.

Example 10 Using a text argument as a string

Wrap definition:

defineps PSWPutString(char *str; float x, y)

x y moveto

(str) show

endps

Procedure call:

PSWPutString("Hello World", 72.0, 72.0);

PostScript language code equivalent:

72.0 72.0 moveto

(Hello World) show

Note: Text arguments are recognized within parentheses only if they appear alone,
without any surrounding white space or additional elements. In the following
wrap definition, only the first string is replaced with the value of the text
argument. The second and third strings are sent unchanged to the interpreter.

defineps PSWThreeStrings(char *str)

(str) (str) (a str)

endps

If a text argument is not marked by either a slash or parentheses,pswrap treats it
as an executable PostScript name object. In Example 11,paintOp is treated as
executable.

Example 11 Using a text argument as an executable name

Wrap definition:

defineps PSWDrawPath(char *paintOp)

0 setgray

paintOp

endps

PSW-22 pswrap Reference Manual 15 April 1993

Procedure call:

PSWDrawPath("stroke");

PostScript language code equivalent:

0 setgray

stroke

5.5 Sending Arrays of Numbers or Booleans

Each element in the wrap body that names an input array argument represents a
PostScript literal array object that has the same element values. In Example 12,
the current transformation matrix is set using an array of six floating-point
values.

Example 12 Wrap with an array argument

Wrap definition:

defineps PSWSetMyMatrix (float mtx[6])

mtx setmatrix

endps

Procedure call:

static float anArray[] = {1.0, 0.0, 0.0, -1.0, 0.0, 0.0};

PSWSetMyMatrix(anArray);

PostScript language code equivalent:

[1.0 0.0 0.0 -1.0 0.0 0.0] setmatrix

ThePSWDefineA wrap in Example 13 sends an array of variable length to the
PostScript interpreter.

Example 13 Wrap with a variable-length array argument

Wrap definition:

defineps PSWDefineA (int data[x]; int x)

/A data def

endps

Procedure call:

static int d1[] ={1, 2, 3};

static int d2[] = {4, 5};

...

PSWDefineA(d1, 3);

PSWDefineA(d2, 2);

pswrap Reference Manual 5 Declaring Input Arguments PSW- 23

P
S

W

PostScript language code equivalent:

/A [1 2 3] def

/A [4 5] def

5.6 Sending a Series of Numeric or Boolean Values

Occasionally, it is useful to group several numeric or Boolean values into a C
array, and pass the array to a wrap that will send the individual elements of the
array to the PostScript interpreter, as in Example 14.

Example 14 Using array elements within a wrap

Wrap definition:

defineps PSWGrayCircle(float nums[3], gray)

newpath

\nums[0] \nums[1] \nums[2] 0.0 360.0 arc

closepath

gray setgray

fill

endps

Procedure call:

static float xyRadius = {40.0, 200.0, 55.0};

PSWGrayCircle(xyRadius, .75);

PostScript language code equivalent:

newpath

40.0 200.0 55.0 0.0 360.0 arc

closepath

.75 setgray

fill

In Example 14,
\nums[i]
identifies an element of an input array in the wrap body, wherenums is the name
of an input boolean array or numeric array argument, andi is a nonnegative
integer literal. No white space is allowed between the backslash (\) and the right
bracket (]).

5.6.1 Specifying the Size of an Input Array

As the previous examples illustrate, you can specify the size of an input array in
two ways:

• Give an integer constant size when you define the procedure, as in the
PSWGrayCircle wrap definition

PSW-24 pswrap Reference Manual 15 April 1993

• Give an input argument that evaluates to an integer at runtime, as in the
PSWDefineA wrap definition

In either case, the size of the array must be a positive integer with a value not
greater than 65,535.

5.6.2 Sending Encoded Number Strings

A number sequence in the PostScript language can be represented either as an
ordinary PostScript array object whose elements are to be used successively or as
an encoded number string. Encoded number strings are described in section
3.12.5, “Encoded Number Strings,” of thePostScript Language Reference
Manual, Second Edition.

The encoded number string format efficiently passes sequences ofnumbers, such
as coordinates, to PostScript operators that take arrays of operands (xyshow and
rectfill , among others). In this form, the arrays take up less space in PostScript
VM. In addition, the operator that consumes them executes faster because the
data in an encoded number string, unlike a PostScript array object, does not have
to be scanned by the PostScript scanner.

To simplify passing encoded number strings in a wrap,pswrap syntax provides
thenumstring data type, which lets you pass PostScript operands as numeric
elements in a normal C array. Thepswrap translator generates code that produces
the encoded number string corresponding to this C array.

Note: numstring is used only for input. It is invalid as an output parameter in a wrap
definition.

The syntax of thenumstring declaration is as follows, where braces enclose
optional parts (the square brackets enclosing the array size are actual brackets):

{modifier} numstring variablename[arraysize] {: scale};

The modifier can beint, long, short, orfloat, and describes the numbers passed in
as a parameter. For example, if a system defines long to be 64-bit integers, the
array passed as a parameter should be 64-bit integers. If no modifier is specified,
the default isint.

Scale applies only to fixed-point types and specifies the number of fractional bits
in the number. If it isn’t specified,scale defaults to zero.

Arraysize andscale can be specified as either constants or variables. Any
variable that is used must be declared immediately after thenumstring parameter
and must be an integer type.

pswrap Reference Manual 5 Declaring Input Arguments PSW- 25

P
S

W

Example 15 Examples of numstrings in wrap definitions

Wrap definitions:

defineps PSWNums1(numstring a[5];)

% Array of 5 elements of default format

% Native integer size, zero scale.

defineps PSWNums2(float numstring a[6];)

% Floating point, constant array size.

defineps PSWNums3(float numstring a[n]; int n;)

% Floating point, variable array size.

define PSWNums4 (int numstring a{6}:8)

% Native integer size, constant array size and scale.

defineps PSWNums5(int numstring a[n]:6; int n;)

% Native integer size, variable array size, constant scale.

defineps PSWNums6(long numstring a[n]:s; int n, s;)

% Long integer size, variable array size and scale.

Note: Number string parameters with int, long, or short modifiers are packed into
16- or 32-bit PostScript language number strings. If an integer type is 16 bits or
shorter, it converts into a 16-bit number string, otherwise it converts into a 32-bit
number string. If an integer type is longer than 32 bits, values will be truncated
to 32 bits.

PSWXShowChars , as shown in Example 16, is a wrap that uses thenumstring
data type to pass an array of user-defined widths to thexshow operator.

Example 16 Wrap with a numstring argument

Wrap definition:

defineps PSWXShowChars(char str[4];

long numstring widths[4]:0)

/Times-Roman 30 selectfont

100 100 moveto

str widths xshow

endps

Procedure call:

char str[4] = "test";

long widths[4] = {7, 10, 9, 7};

...

PSWXShowChars(str, widths);

PSW-26 pswrap Reference Manual 15 April 1993

PostScript language code equivalent:

/Times-Roman 30 selectfont

/str (test) def

/widths <95800400070000000A0000000900000007000000> def

% encoded number string, hex format,

% preceded by 4-byte generated header

100 100 moveto

str widths xshow

5.7 Specifying the Context

Every wrap communicates with a PostScript execution context. The current
context is normally used as the default. The Client Library provides operations
for setting and getting the current context for each application. To override the
default, declare the first argument as typeDPSContext and pass the appropriate
context as the first parameter whenever the application calls the wrap. Example
17 shows a wrap definition that explicitly declares a context.

Note: Do not refer to the name of the context in the wrap body.

Example 17 Wrap that declares a context

Wrap definition:

defineps PSWGetGray(DPSContext c | float *level)

currentgray level

endps

Procedure call:

DPSContext myContext;

float aLevel;

...

PSWGetGray(myContext, &aLevel);

PostScript language code equivalent:

currentgray

% Pop current gray level off operand stack

% and store in aLevel

pswrap Reference Manual 6 Declaring Output Arguments PSW- 27

P
S

W

6 Declaring Output Arguments

To receive information from the PostScript interpreter, the output arguments of a
wrap must refer to locations where the information can be stored. One of the
following can be declared as an output argument:

• A pointer to one of thepswrap data types listed previously exceptuserobject

• An array of one of these types

• A character string (char* or unsigned char*)

• A character array (char [] or unsigned char [])

If an output argument is declared as a pointer or character string, the procedure
writes the returned value at the pointed-to location.

For an output argument declared as a pointer, previous return values are
overwritten if the output argument is encountered more than once in executing
the wrap body.

For an output argument declared as acharacter string(char *), the value is stored
only the first time it is encountered.

For an output argument declared as an array of one of thepswrap data types or as
a character array, the wrap fills the slots in the array.

For example, the wrap in Example 18 returns2 in nump, “abc” in charp, the
array{3,4} in numarray, and the string“ghijkl” in chararray.

Example 18 Returning output values more than once

Wrap definition:

defineps PSWreturn(| int *nump, char *charp,

int numarray[2], char chararray[6])

1 nump

2 nump

3 numarray

4 numarray

(abc) charp

(def) charp

(ghi) chararray

(jkl) chararray

endps

PSW-28 pswrap Reference Manual 15 April 1993

Note: Whenever an array output argument is encountered in the wrap body, the values
on the PostScript operand stack are placed in the array in the order in which they
would be popped off the stack. When the array bounds have been exceeded, no
further storing of output in the array is done. No error is reported if elements are
returned to an array that is full.

You can specify output arguments in thedefineps statement in any order that is
convenient. The order of the output arguments has no effect on the execution of
the PostScript language code in the wrap body.

pswrap does not check whether the wrap definition provides return values for all
output arguments, nor does it perform type checking for declared output
arguments.

6.1 Receiving Numbers

PostScript integer objects and real objects are 32 bits long. When returned, these
values are assigned to the variable provided by the output argument. On a system
where the size of anint or float is 32 bits, pass a pointer to anint as the output
argument for a PostScript integer object; pass a pointer to afloat as the output
argument for a PostScript real object:

defineps PSWMyWrap (| float *f; int *i)

A PostScript integer object or real object can be returned as afloat or double.
Other type mismatches cause atypecheck error (for example, attempting to
return a PostScript real object as anint).

6.2 Receiving Boolean Values

A procedure can declare a pointer to aboolean as an output argument.

Example 19 Wrap with a boolean output argument

Wrap definition:

defineps PSWKnown(char *Dict, *x | boolean *ans)

Dict /x known ans

endps

Procedure call:

int found;

...

PSWKnown("statusdict", "duplex", &found);

PostScript language code equivalent:

statusdict /duplex known found

pswrap Reference Manual 6 Declaring Output Arguments PSW- 29

P
S

W

This wrap expects to be passed the address of a variable of typeint as its output
argument. If the PostScript interpreter returns the valuetrue, the wrap places a
value of1 (one) in the variable referenced by the output argument. If the
interpreter returns the valuefalse, the wrap places a value of0 (zero) in the
variable.

6.3 Receiving a Series of Output Values

To receive a series of output values as an array, declare an array output argument;
then write a wrap body in the PostScript language to compute and return its
elements, one or more elements at a time. Example 20 declares a wrap that
returns the 256 font widths for a given font name at a given font size.

Example 20 Returning a series of output values

Wrap definition:

def ineps PSWGetWidths(char *fn; int size | f loat wide[256])

/fn size selectfont

0 1 255 {

(X) dup 0 4 -1 roll put

stringwidth pop wide

} for

endps

Procedure call:

float widths[256];

PSWGetWidths("Serifa", 12, widths);

PostScript language code equivalent:

/Serifa 12 selectfont

0 1 255 {

(X) dup 0 4 -1 roll put

stringwidth pop

% Pop width for this character and insert width

% into widths array at current element;

% point to next element.

} for

In Example 20, the loop counter is used to assign successive ASCII values to the
scratch string(“X”). Thestringwidth operator then places both the width and
height of the string on the PostScript operand stack. (Here it operates on a string
one character long.)

Thepop operator removes the height from the stack, leaving the width at the top.
The occurrence of the output argumentwide in this position triggers the width to
be popped from the stack, returned to the application, and inserted into the output
array at the current element. The next element then becomes the current element.

PSW-30 pswrap Reference Manual 15 April 1993

The for loop (the procedure enclosed in braces followed byfor) repeats these
operations for each character in the font, beginning with the first, 0, and ending
with 255th element of the font array.

6.3.1 Receiving a Series of Array Elements

A PostScript array object can contain a series of elements to be stored in an
output array. The output array is filled in, one element at a time, until it’s full.
Therefore, the PSWTest wrap defined below returns{1, 2, 3, 4, 5, 6}:

defineps PSWTest(| int Array[6])

[1 2 3] Array

[4 5 6] Array

endps

ThePSWTestMore wrap defined below returns{1, 2, 3, 4}:

defineps PSWTestMore(| int Array[4])

[1 2 3] Array

[4 5 6] Array

endps

6.3.2 Specifying the Size of an Output Array

The size of an output array is specified in the same manner as the size of an input
array. Use a constant in the wrap definition or an input argument that evaluates to
an integer at runtime. If more elements are returned than fit in the output array,
the additional elements are discarded.

6.4 Receiving Characters

To receive characters from the PostScript interpreter, declare the output
argument as either a character string or as a character array.

If the argument is declared as a character string, the wrap copies the returned
string to the location indicated. Provide enough space for the maximum number
of characters that might be returned, including the null character (\0) that
terminates the string. Only the first string encountered will be returned. For
example, in the followingPSWStrings procedure, the string“123” is returned:

defineps PSWStrings(| char *str)

(123) str

(456) str

endps

Character arrays, on the other hand, are treated just like arrays ofnumbers. In the
PSWStrings2 procedure, the value returned forstr will be “123456”.

pswrap Reference Manual 6 Declaring Output Arguments PSW- 31

P
S

W

defineps PSWStrings2(| char str[6])

(123) str

(456) str

endps

Note: The string is not null terminated. If the argument is declared as a character array
(for example,char s[num]), the procedure copies up tonum characters of the
returned string into the array. Additional characters are discarded.

6.5 Communication and Synchronization

The PostScript interpreter can run as a separate process from the application; it
can also run on a separate machine. When the application and interpreter
processes are separated, the application programmer must take communication
into account. This section alerts you to communication and synchronization
issues.

A wrap that has no output arguments returns as soon as the wrap body is
transferred to the client-server communications channel. In this case, the
communications channel is not necessarily flushed. Since the wrap body is not
executed by the PostScript interpreter until the communications channel is
flushed, errors arising from the execution of the wrap body can be reported long
after the wrap returns.

In the case of a wrap that returns a value, the entire wrap body is transferred to
the client-server communications channel, which is then flushed. The client-side
code awaits the return of output values followed by a special termination value.
Only then does the wrap return.

PSW-32 pswrap Reference Manual 15 April 1993

7 Syntax

Square brackets,[], mean that the enclosed form is optional. Curly brackets,{ },
mean that the enclosed form is repeated, possibly zero times. A vertical bar,|,
separates choices in a list.

Unit =

ArbitraryText {Definition ArbitraryText}

Definition =

NLdefineps ["static"] Ident "(" [Args] ["|" Args]")"

Body

NLendps

Body =

{Token}

Token =

Number | PSIdent | SlashPSIdent

| "(" StringLiteral ")"

| "<" StringLiteral ">"

| "{" Body "}"

| "[" Body "]"

| Input Element

Args =

ArgList {";" ArgList} [";"]

ArgList =

 Type ItemList

Type =

"DPSContext" | "boolean" | "float" | "double"

| ["unsigned"] "char"

| ["unsigned"] ["short" | "long"] "int"

| ["int" | "long" | "short" | "float"] "numstring"

ItemList =

Item {"," Item}

Item =

"*" Ident | Ident ["["Subscript"]"]

| Ident "["Subscript"]" [Scale]

Subscript =

Integer | Ident

Scale =

":" Integer | ":" Ident

pswrap Reference Manual 7 Syntax PSW- 33

P
S

W

7.1 Syntactic Restrictions

• DPSContext must be the first input argument if it appears.

• A simple char argument(char Ident) is never allowed; it must be* or [] .

• A simpleIdent item is not allowed in an output item list; it must be* or [] .

7.2 Clarifications

• NLdefineps matches the terminaldefineps at the beginning of a new line.

• NLendps matches the terminalendps at the beginning of a new line.

• Ident follows the rules for C names;PSIdent follows the rules for PostScript
language names.

• SlashPSIdent is a PostScript language name preceded by a slash.

• StringLiteral tokens follow the PostScript language conventions for string
literals.

• Number tokens follow the PostScript language conventions for numbers.

• Integer subscripts follow the C conventions for integer constants.

• Input Element is \n[i] wheren is the name of an input array argument,i is a
nonnegative integer literal, and no white space is allowed between\ and] .

PSW-34 pswrap Reference Manual 15 April 1993

PSW-35

P
S

W

Appendix A

Error Messages from the
pswrap Translator

The following is a list of error messages the pswrap translator can generate:

input parameter used as a subscript is not an integer

output parameter used as a subscript

char input parameters must be starred or subscripted

hex string too long

invalid characters

invalid characters in definition

invalid characters in hex string

invalid radix number

output arguments must be starred or subscripted

out of storage, try splitting the input file

-s 80 is the minimum

can’t allocate char string, try a smaller -s value

can’t open file for input

can’t open file for output

error in parsing

string too long

usage: pswrap [- s maxstring] [- ar] [- h headerf ile] [- o outf ile]

[infile]

endps without matching defineps

errors in parsing

PSW-36 pswrap Reference Manual 15 April 1993

errors were encountered

size of wrap exceeds 64K

parameter reused

output parameter used as a subscript

non-char input parameter

not an input parameter

not a scalar type

wrong type

parameter index expression empty

parameter index expression error

end of input file/missing endps

