
Adobe Systems Incorporated

Display PostScript System

Display PostScript Toolkit for X

15 April 1993

Adobe Systems Incorporated

Adobe Developer Technologies
345 Park Avenue
San Jose, CA 95110
http://partners.adobe.com/

Copyright © 1989-1993 by Adobe Systems Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of the publisher. Any software referred to herein is furnished under license and may
only be used or copied in accordance with the terms of such license.

PostScript, the PostScript logo, Display PostScript, Adobe Garamond, Trajan, and the Adobe logo are
trademarks of AdobeSystems Incorporated which may be registered in certain jurisdictions. Motif is
a trademark of Open Software Foundation, Inc. Helvetica and New Caledonia are trademarks of
Linotype-Hell AG and/or its subsidiaries. X Window System is a trademark of the Massachusetts
Institute of Technology. Other brand or product names are the trademarks or registered trademarks of
their respective holders.

This publication and the information herein is furnished AS IS, is subject to change without notice, and
should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems
Incorporated assumes no responsibility or liability for any errors or inaccuracies, makes no warranty
of any kind (express, implied or statutory) with respect to this publication, and expressly disclaims any
and all warranties of merchantability, fitness for particular purposes and noninfringement of third
party rights.

TK-iii

T
K

Contents

1 About This Manual TK-1
What This Manual Contains TK-1

2 About the Display PostScript Toolkit TK-3
Common Definitions TK-3

3 Context Management Procedures TK-5
Introduction TK-5
Programming Tips TK-6
Procedure Overview TK-7
Structures TK-7
Procedures TK-8

4 User Objects TK-15
Procedure Overview TK-15
Procedures TK-15

5 User Paths TK-17
Structures and Type Definitions TK-17
Procedure Overview TK-18
Procedures TK-19

6 File Preview Procedures TK-22
Introduction TK-22
Structures and Type Definitions TK-25
Procedure Overview TK-27
Procedures TK-27

7 The Motif Font Selection Panel TK-34
Using the Motif Font Selection Panel TK-35
Application Control of the Font Panel TK-37
Font Downloading and Resource Database Files TK-38
Font Selection Resources TK-39
Callback Procedures TK-44
Procedures TK-48

8 The Motif Font Sampler TK-53
Using the Motif Font Sampler TK-53
Motif Font Sampler Resources TK-56
Callbacks TK-58
Procedures TK-59

TK-iv Contents

Index
See Global Index to the Display PostScript Reference Manuals

TK-v

T
K

List of Figures

Figure 1 The font selection panel TK-35
Figure 2 The font sampler TK-54

TK-vi List of Figures

TK-vii

T
K

List of Tables

Table 1 Toolkit return values TK-4
Table 2 Context management procedures TK-7
Table 3 User object procedures TK-15
Table 4 User path procedures TK-19
Table 5 Operators and coordinates TK-20
Table 6 File preview procedures TK-27
Table 7 Status return values for XDPSCreatePixmapForEPSF TK-29
Table 8 Motif font selection panel resource set TK-39
Table 9 Behaviors for XtNundefUnusedFonts and XtNmakeFontsShared TK-42
Table 10 Motif font selection panel child resource set TK-43
Table 11 Motif font selection panel callback resource set TK-44
Table 12 Motif font sampler resource set TK-56
Table 13 Motif Font sampler child resource set TK-58
Table A.1 Resource types TK-65

TK-viii List of Tables

TK-ix

T
K

List of Examples

Example 1 Creating a pixmap and executing an EPS file TK-23
Example 2 Protecting against incorrect EPS files TK-25
Example A.1 Resource database file for fonts in the Trajan family TK-64

TK-x List of Examples

TK-1

T
K

Display PostScript Toolkit
for X

1 About This Manual

Display PostScript Toolkit for Xmanual describes the Display PostScript Toolkit
for the X Window System. It also contains information about locating PostScript
language resources and about themakepsres utility.

The Display PostScript Toolkit is a collection of procedures and objects for
programmers who use the Display PostScript extension to the X Window
System, which is sometimes referred to as DPS/X. The toolkit can be used for
context management, user object management, user path handling, and file
previewing. It also allows you to preview and choose from currently available
fonts by using the font selection panel and the font sampler.

The toolkit is supplemented by procedures for locating PostScript language
resources using resource database files and by themakepsres utility, which can be
used to create the resource database files. These utilities are used by the font
selection panel, but can be helpful in other situations as well.

The toolkit library that contains the facilities described in this manual is available
from several sources:

• The X Consortium Release 5 contributed software undercontrib/lib/DPS.

• The Display PostScript System Software Development Kit for the X Window
System, available from Adobe Systems.

• On Adobe’s public access file server. Using the file server is described in the
preface of this book.

• The Display PostScript system release provided by your system vendor. Note,
however, that not all system vendors include the Display PostScript Toolkit as
part of their release.

1.1 What This Manual Contains

Section 2, “About the Display PostScript Toolkit,” introduces the Display
PostScript Toolkit.

TK-2 Display PostScript Toolkit for X 15 April 1993

Section 3, “Context Management Procedures,” describes context management
procedures.

Section 4, “User Objects,” documents facilities for working with user objects.

Section 5, “User Paths,” introduces a convenient interface for working with user
paths.

Section 6, “File Preview Procedures,” describes file preview procedures, which
simplify rendering PostScript language files into X drawable objects (windows or
pixmaps).

Section 7, “The Motif Font Selection Panel,” provides information about the font
selection panel, which can be used to view and select the fonts available on a
workstation.

Section 8, “The Motif Font Sampler,” provides information about the font
sampler, which can be popped up from the font selection panel for viewing
multiple fonts simultaneously.

Appendix AA explains how applications can locate PostScript language
resources using resource database files.

Appendix BB documents themakepsres utility, which can be used to create
resource database files.

Display PostScript Toolkit for X 2 About the Display PostScript Toolkit TK- 3

T
K

2 About the Display PostScript Toolkit

The toolkit is located in the librarieslibdpstk.a andlibdpstkXm.a. The
libdpstkXm.a library contains the Motif font selection and font sampler dialogs,
and the librarylibdpstk.a contains everything else. When compiling an
application, you must specify these libraries to the linker before the Display
PostScript librarylibdps.a.

• If an application uses the font selection panel, you must specify the toolkit
libraries to the linker before the Motif™ library. In that case, you must also link
with the resource location library for the PostScript language, which is
described in Appendix A. The normal order for libraries is:

–ldpstk -ldpstkXm –lpsres –lXm –lXt –ldps –lX11 –lm

• If the application does not use the font selection panel, linking with
libdpstkXm.a and Motif is not required. In that case, the normal order for
libraries is:

–ldpstk –ldps –lX11 –lm

Note: The math library, libm.a, is required by some implementations of libdps.a.

2.1 Common Definitions

The header file<DPS/dpsXcommon.h> contains definitions used by various
procedures in the Display PostScript Toolkit.

2.1.1 Type Definitions

The typeDPSPointer is used for pointers of an unspecified type.

DPSPointer typedef char *DPSPointer;

Note: The definition ofDPSPointer is implementation-specific.

TK-4 Display PostScript Toolkit for X 15 April 1993

2.1.2 Return Values

Table1 describes the values returned by the procedures in the Display PostScript
Toolkit. These values are all of typeint.

Table 1 Toolkit return values

Return Value Meaning

dps_status_success The procedure executed successfully and to completion.

dps_status_failure The procedure failed. The reason is documented in the description of the
procedure.

dps_status_no_extension The procedure attempted to execute an operation that requires context
creation and discovered that the server does not support the Display
PostScript extension.

dps_status_unregistered_context The procedure requires a context registered with the context manager, and
the passed context has not been registered.

dps_status_illegal_value One of the parameters to the procedure has an illegal value.

dps_status_postscript_error The PostScript language code being handled by the procedure contains an
error.

dps_status_imaging_incomplete The PostScript language code being handled by the procedure did not finish
execution within a time-out period.

Display PostScript Toolkit for X 3 Context Management Procedures TK- 5

T
K

3 Context Management Procedures

In DPS/X, a context is a server resource that represents all of the execution state
needed by the PostScript interpreter to run PostScript language programs.
Contexts are described inClient Library Reference Manual and inClient Library
Supplement for X.

This section documents context management procedures provided by the Display
PostScript Toolkit. A brief introduction is followed by a tablelisting all available
procedures. The rest of the section lists structures and procedure definitions in
alphabetical order.

3.1 Introduction

A PostScript execution context consists of all the information (or state) needed
by the PostScript interpreter to execute a PostScript language program. Context
management utilities allow different code modules to share PostScript contexts.
They make it easy to associate several drawables with one context and to switch
between the drawables. They also hide the details of context creation from an
application by creating and managing default contexts.

Some libraries provide an encapsulated service—a closed, well-defined task with
minimal outside interaction (for example, displaying read-only text). If you are
writing a library that provides an encapsulated service, the context management
procedures can simplify the interface you provide to applications. For example,
the file preview procedures described in section 6, “File Preview Procedures,”
can use the context management procedures to get a context for previewing a file.
The font selection panel described in section 7, “The Motif Font Selection
Panel,” can use the context management procedures to get a context for
previewing fonts. If an application uses both file previewing and the font
selection panel, they can share the same context. The shared context is called the
default context for the application. Context management procedures allow an
application that uses the file preview procedures to ignore contexts completely;
the application does not even have to know that contexts exist.

Code that uses the context management procedures must include
<DPS/dpsXshare.h>, which automatically includes<DPS/dpsXcommon.h>.

An application can get the shared context for a display by calling
XDPSGetSharedContext . To use the context management procedures on its
own context, the application can register its context with the context manager by
callingXDPSRegisterContext . In either case, the application can then
manipulate the context in a number of ways:

• Chain text contexts usingXDPSChainTextContext.

TK-6 Display PostScript Toolkit for X 15 April 1993

• Set window system parameters for a context using
XDPSSetContextParameters , or set individual parameters using
XDPSSetContextDepth , XDPSSetContextGrayMap ,
XDPSSetContextRGBMap , or XDPSSetContextDrawable .

• Call XDPSPushContextParameters to temporarily set parameters and
undo the results usingXDPSPopContextParameters .

• Work with gstate objects (data structures that hold current graphics control
parameters) by first capturing the current graphics state with
XDPSCaptureContextGState , and then setting a context to the saved gstate
object usingXDPSSetContextGState . UseXDPSPushContextGState to
temporarily set a context to a gstate object and later undo this action with
XDPSPopContextGState . To update or to free a gstate object,
XDPSUpdateContextGState andXDPSFreeContextGState can be called.

• Free contexts that are no longer needed by calling
XDPSDestroySharedContext , which destroys a shared context and its
space.XDPSUnregisterContext can be called to free context information
without destroying the context.

3.2 Programming Tips

Capturing the current state withXDPSCaptureContextGState and restoring it
later withXDPSPushContextGState or XDPSSetContextGState is more
efficient than setting the parameters each time. However, each gstate object
consumes memory, so don’t capture a gstate object unless you expect to return to
it. You should also free gstate objects that are no longer being used, or recycle
them withXDPSUpdateContextGState .

Display PostScript Toolkit for X 3 Context Management Procedures TK- 7

T
K

3.3 Procedure Overview

3.4 Structures

TheXDPSStandardColormap structure is identical to theXStandardColormap
structure but allows signed numbers for the multipliers.

Table 2 Context management procedures

Procedure Functionality

XDPSCaptureContextGState Captures the current graphics state as a gstate object and returns a
handle to it.

XDPSChainTextContext Enables or disables a chained text context for a context.

XDPSDestroySharedContext Destroys a shared context for a display and the context’s space.

XDPSExtensionPresent Determines whether a display supports the Display PostScript
extension.

XDPSFreeContextGState Releases a gstate object.

XDPSFreeDisplayInfo Frees the stored display information for a display.

XDPSGetSharedContext Returns the shared context for a display.

XDPSPopContextGState Reverses the effects ofXDPSPushContextGState .

XDPSPopContextParameters Reverses the effects ofXDPSPushContextParameters .

XDPSPushContextGState Sets a context to a saved gstate object; can be undone by
XDPSPopContextGState .

XDPSPushContextParameters Sets context parameters; can be undone by
XDPSPopContextParameters .

XDPSRegisterContext Registers a context with the context manager.

XDPSSetContextDepth Sets the screen and depth for a context.

XDPSSetContextDrawable Sets the drawable for a context.

XDPSSetContextGrayMap Sets the gray ramp for a context.

XDPSSetContextGState Sets a context to a saved gstate object.

XDPSSetContextParameters Sets context parameters.

XDPSSetContextRGBMap Sets the RGB map for a context.

XDPSUnregisterContext Frees context information for a context but doesn’t destroy the context.

XDPSUpdateContextGState Updates a saved gstate object to correspond to the current graphics
state.

TK-8 Display PostScript Toolkit for X 15 April 1993

XDPSStandardColormap typedef struct {

Colormap colormap;

unsigned long red_max;

long red_mult;

unsigned long green_max;

long green_mult;

unsigned long blue_max;

long blue_mult;

unsigned long base_pixel;

unsigned long visualid;

unsigned long killid;

} XDPSStandardColormap;

The structure is used byXDPSSetContextRGBMap ,
XDPSSetContextGrayMap, XDPSSetContextParameters , and
XDPSPushContextParameters .

3.5 Procedures

XDPSCaptureContextGState int XDPSCaptureContextGState (context, *gsReturn)

DPSContext context;

DPSGState *gsReturn;

XDPSCaptureContextGState captures the current graphics state as a gstate
object and returns a reference to it.DPSGState is an opaque type. It is legal to
set aDPSGState variable to integer zero and to test it against zero—
XDPSCaptureContextGState never returns zero ingsReturn.

XDPSCaptureContextGState returnsdps_status_unregistered_context or
dps_status_success.

XDPSChainTextContext int XDPSChainTextContext (context, enable)

DPSContext context;

Bool enable;

XDPSChainTextContext either enables or disables a chained text context for a
context. The first timeXDPSChainTextContext is called withenable set to
True, it creates the text context. The text context writes its output to the standard
output file.

The context must have been registered withXDPSRegisterContext .

XDPSChainTextContext returnsdps_status_unregistered_context or
dps_status_success.

Display PostScript Toolkit for X 3 Context Management Procedures TK- 9

T
K

XDPSDestroySharedContext void XDPSDestroySharedContext (context)

DPSContext context;

XDPSDestroySharedContext destroys the shared context for a display; it also
destroys the context’s space.

XDPSExtensionPresent Bool XDPSExtensionPresent (display)

Display *display;

XDPSExtensionPresent returnsTrue if display supports the Display
PostScript extension,False otherwise.

XDPSFreeContextGState int XDPSFreeContextGState (context, gs)

DPSContext context;

DPSGState gs;

XDPSFreeContextGState releases a gstate object previously acquired through
XDPSCaptureContextGState .

XDPSFreeContextGState returnsdps_status_unregistered_context or
dps_status_success.

XDPSFreeDisplayInfo void XDPSFreeDisplayInfo (display)

Display *display;

XDPSFreeDisplayInfo frees the stored display information fordisplay. It
should be used if an application no longer needs to use the Display PostScript
Toolkit on that display, but the application will be continuing.

XDPSGetSharedContext DPSContext XDPSGetSharedContext (display)

Display *display;

XDPSGetSharedContext returns the shared context fordisplay. If no shared
context exists, it creates one.XDPSGetSharedContext returnsNULL if display
does not support DPS/X.

The returned context is initially set to use the default colormap on the default
screen with the default depth, but is not set to use any drawable.

TK-10 Display PostScript Toolkit for X 15 April 1993

XDPSPopContextGState int XDPSPopContextGState (pushCookie)

DPSPointer pushCookie;

XDPSPopContextGState restores a context to the state it was in before the call
to XDPSPushContextGState that returnedpushCookie.

XDPSPushContextGState andXDPSPopContextGState must be called in a
stack-oriented fashion.

XDPSPopContextGState returnsdps_status_success or
dps_status_illegal_value.

XDPSPopContextParameters
int XDPSPopContextParameters (pushCookie)

DPSPointer pushCookie;

XDPSPopContextParameters restores all context parameters to the state they
were in before the call toXDPSPushContextParameters that returned
pushCookie.

XDPSPushContextParameters andXDPSPopContextParameters must be
called in a stack-oriented fashion.

XDPSPopContextParameters returnsdps_status_success or
dps_status_illegal_value.

XDPSPushContextGState int XDPSPushContextGState (context, gs, pushCookieReturn)

DPSContext context;

DPSGState gs;

DPSPointer *pushCookieReturn;

XDPSPushContextGState sets a context to a saved gstate object. This can be
undone by passing the returned pushCookieReturn to
XDPSPopContextGState .

XDPSPushContextGState andXDPSPopContextGState must be called in a
stack-oriented fashion.

XDPSPushContextGState returnsdps_status_unregistered_context or
dps_status_success.

Display PostScript Toolkit for X 3 Context Management Procedures TK- 11

T
K

XDPSPushContextParameters
int XDPSPushContextParameters (context, screen, depth,

drawable, height, rgbMap, grayMap, flags,

pushCookieReturn)

DPSContext context;

Screen *screen;

int depth;

Drawable drawable;

int height;

XDPSStandardColormap *rgbMap;

XDPSStandardColormap *grayMap;

unsigned int flags;

DPSPointer *pushCookieReturn;

XDPSPushContextParameters is identical toXDPSSetContextParameters
but can be undone by passing the returnedpushCookieReturn to
XDPSPopContextParameters .

XDPSPushContextParameters andXDPSPopContextParameters must be
called in a stack-oriented fashion.

XDPSPushContextParameters returns the same values as
XDPSSetContextParameters .

XDPSRegisterContext void XDPSRegisterContext (context, makeSharedContext)

DPSContext context;

Bool makeSharedContext;

XDPSRegisterContext registers a context with the context manager and makes
it possible to manipulate the context using the procedures in this section.

If makeSharedContext is True, context becomes the shared context for the
display. This does not destroy the previous shared context for the display, if there
is one.

XDPSSetContextDepth int XDPSSetContextDepth (context, screen, depth)

DPSContext context;

Screen *screen;

int depth;

XDPSSetContextDepth sets a context for use with a particular screen and
depth.

XDPSSetContextDepth returnsdps_status_unregistered_context or returns
dps_status_success. If screen is not on the context’s display ordepth is not
valid for that screen, XDPSSetContextDepth returns
dps_status_illegal_value.

TK-12 Display PostScript Toolkit for X 15 April 1993

XDPSSetContextDrawable int XDPSSetContextDrawable (context, drawable, height)

DPSContext context;

Drawable drawable;

int height;

XDPSSetContextDrawable sets a context for use with a particular drawable
that has the specifiedheight. The origin is at the lower left corner. The context
must already be set for use with the drawable’s screen; see
XDPSSetContextDepth .

XDPSSetContextDrawable returnsdps_status_unregistered_context or
returnsdps_status_success. If height is less than 1,
XDPSSetContextDrawable returnsdps_status_illegal_value.

XDPSSetContextGrayMap int XDPSSetContextGrayMap (context, map)

DPSContext context;

XDPSStandardColormap *map;

XDPSSetContextGrayMap sets the gray ramp forcontext. The colormap in the
map structure must be appropriate for the current drawable and depth. This
colormap can beNone when the context is imaging to a pixmap. In that case, the
ramps must be set to the values used in the window that will display the pixmap.

If map is NULL, the default gray ramp for the default screen of the context’s
display is used. Theflags parameter ofXDPSSetContextParameters described
below can be used to get the default for a nondefault screen.

The gray ramp is based upon thebase_pixel, red_max, andred_mult fields of
theXDPSStandardColormap structure; all other_max and_mult fields are
ignored.

XDPSSetContextGrayMap returnsdps_status_unregistered_context or
returnsdps_status_success.

XDPSSetContextGState int XDPSSetContextGState (context, gs)

DPSContext context;

DPSGState gs;

XDPSSetContextGState sets a context to a saved gstate object. It returns
dps_status_success or dps_status_unregistered_context.

Display PostScript Toolkit for X 3 Context Management Procedures TK- 13

T
K

XDPSSetContextParameters int XDPSSetContextParameters (context, screen, depth,

drawable, height, rgbMap, grayMap, flags)

DPSContext context;

Screen *screen;

int depth;

Drawable drawable;

int height;

XDPSStandardColormap *rgbMap;

XDPSStandardColormap *grayMap;

unsigned int flags;

XDPSSetContextParameters sets any of the context parameters. It uses the
following macros to decide which parameters to set.

XDPSContextScreenDepth

XDPSContextDrawable

XDPSContextRGBMap

XDPSContextGrayMap

flags should be a bitwiseOR of one or more of these values.

XDPSSetContextParameters returnsdps_status_success if all requested
changes were successfully made. If any parameter is in error,
XDPSSetContextParameters returns either
dps_status_unregistered_context or dps_status_illegal_value as appropriate.
In the case of non-success, no changes were made.

If flags requires that a colormap is set and the correspondingmap parameter is
NULL, a default map is used. In that case:

• If screen is notNULL, the default map is the one set on the screen’s root
window.

• If screen is NULL anddrawable is None, the default map is the one on the
display’s default root window.

• If screen is NULL butdrawable is notNone, the default map is the one set on
the root window of the screen specified bydrawable.

XDPSSetContextRGBMap int XDPSSetContextRGBMap (context, map)

DPSContext context;

XDPSStandardColormap *map;

XDPSSetContextRGBMap sets the RGB color cube forcontext. The colormap
in themap structure must be appropriate for the current drawable and depth. This
colormap can beNone if the application is rendering to a pixmap. In that case,
the ramps must be set to the values used in the window that will display the
pixmap.

TK-14 Display PostScript Toolkit for X 15 April 1993

If map is NULL, the default RGB cube for the default screen of the context’s
display is used. Theflags parameter ofXDPSSetContextParameters described
above can be used to get the default for a nondefault screen.

XDPSSetContextRGBMap returns dps_status_success or returns
dps_status_unregistered_context.

XDPSUnregisterContext void XDPSUnregisterContext (context)

DPSContext context;

XDPSUnregisterContext frees context information but doesn’t destroy a
context.

XDPSUpdateContextGState int XDPSUpdateContextGState (context, gs)

DPSContext context;

DPSGState gs;

XDPSUpdateContextGState updates the saved gstate object to correspond to
the current graphics state. The previous setting of the gstate object is no longer
accessible.

XDPSUpdateContextGState returnsdps_status_unregistered_context or
dps_status_success.

Display PostScript Toolkit for X 4 User Objects TK- 15

T
K

4 User Objects

The toolkit procedures described in this section can be used to manage user
objects such as user paths. These procedures are recommended for any DPS/X
application that uses user objects. User objects are discussed in section 3.7.6 of
PostScript Language Reference Manual, Second Edition.

The procedures documented in this section are compatible with those described
in described in “User Object Indices” in section 3.3 ofClient Library Supplement
for X. An application can combine them as convenient.

Applications that call the procedures documented in this section must include
<DPS/dpsXshare.h>. The procedures can be used for any context; it is not
necessary to register the context first.

4.1 Procedure Overview

Two forms are provided for each user object management procedure, one starting
with DPS and the other withPS. The procedures are identical, except for the first
argument: the procedure starting withPS uses the current context, while the
procedure starting withDPS requires a context as its first argument.

4.2 Procedures

PSDefineAsUserObj
DPSDefineAsUserObj int DPSDefineAsUserObj (context)

DPSContext context;

DPSDefineAsUserObj allocates a user object index and associates it with the
item on top of the operand stack. The return value is the user object index.

Table 3 User object procedures

Procedure Functionality

PSDefineAsUserObj
DPSDefineAsUserObj

Allocates a user object index and associates
it with the item on top of the operand stack

PSRedefineUserObj
DPSRedefineUserObj

Breaks the association between a user object
index and its current object and associates
the index with the item on top of the operand
stack.

PSReserveUserObjIndices
DPSReserveUserObjIndices

Reserves a number of user object indices for
an application’s use.

PSUndefineUserObj
DPSUndefineUserObj

Breaks the association between a user object
index and its current object.

TK-16 Display PostScript Toolkit for X 15 April 1993

PSRedefineUserObj
DPSRedefineUserObj void DPSRedefineUserObj (context, userObj)

DPSContext context;

int userObj;

DPSRedefineUserObj breaks the association between the user object index
userObj and its current object. It then associates the index with the item on top of
the operand stack.

PSReserveUserObjIndices
DPSReserveUserObjIndices int DPSReserveUserObjIndices (context, number)

DPSContext context;

int number;

DPSReserveUserObjIndices reserves a specified number of user object
indices for an application’s use. It does not associate these indices with any
objects. The return value is the first index reserved; if the return value isf, an
application can freely use the indicesf throughf+number–1.

PSUndefineUserObj
DPSUndefineUserObj void DPSUndefineUserObj (context, userObj)

DPSContext context;

int userObj;

DPSUndefineUserObj breaks the association between the user object index
userObj and its current object. Further use of the index is not allowed. Future
calls toDPSDefineAsUserObj might return the same index with a new
association.

Display PostScript Toolkit for X 5 User Paths TK- 17

T
K

5 User Paths

The procedures described in this section provide convenient access to user paths.
A user path is a PostScript language procedure that consists entirely of path
construction operators and their coordinate operands expressed as literal
numbers. User paths can also be expressed in a compact, encoded form. The
compact form is the format generated by the procedures described in this section.

User paths are described in section 4.6 ofPostScript Language Reference
Manual, Second Edition. Applications that use the utilities described in this
section must include<DPS/dpsXuserpath.h>.

5.1 Structures and Type Definitions

DPSNumberFormat typedef enum _DPSNumberFormat {

dps_float,

dps_long,

dps_short

} DPSNumberFormat;

DPSNumberFormat describes the format of numeric procedure call parameters.

• For floating point, 32-bit, or 16-bit values, usedps_float, dps_long, or
dps_short, respectively.

• For 32-bit fixed-point numbers, usedps_long plus the number of bits in the
fractional part.

• For 16-bit fixed-point numbers, usedps_short plus the number of bits in the
fractional part.

Note: You cannot use 64-bit values with the procedures in this section.

TK-18 Display PostScript Toolkit for X 15 April 1993

DPSUserPathOp typedef enum _DPSUserPathOp {

dps_setbbox,

dps_moveto,

dps_rmoveto,

dps_lineto,

dps_rlineto,

dps_curveto,

dps_rcurveto,

dps_arc,

dps_arcn,

dps_arct,

dps_closepath,

dps_ucache};

typedef char DPSUserPathOp;

DPSUserPathOp enumerates the PostScript operators that define a path.

DPSUserPathAction typedef enum _DPSUserPathAction {

dps_uappend,

dps_ufill,

dps_ueofill,

dps_ustroke,

dps_ustrokepath,

dps_inufill,

dps_inueofill,

dps_inustroke,

dps_infill,

dps_ineofill,

dps_instroke,

dps_def,

dps_put,

dps_send

} DPSUserPathAction;

DPSUserPathAction enumerates the operators that can be applied to a path. The
special actiondps_send pushes the user path on the stack and leaves it there.

5.2 Procedure Overview

Two forms are provided for each user path procedure, one starting withDPS and
the other withPS. The procedures are identical, except for the first argument: the
procedure starting withPS uses the current context, while the procedure starting
with DPS requires a context as its first argument.

Display PostScript Toolkit for X 5 User Paths TK- 19

T
K

A context used with these procedures does not need to be registered with the
context management procedures described in section 3, “Context Management
Procedures.”

5.3 Procedures

PSDoUserPath
DPSDoUserPath void DPSDoUserPath (ctx, coords, numCoords, numType, ops,

numOp, bbox, action)
DPSContext ctx;

DPSPointer coords;

int numCoords;

DPSNumberFormat numType;

DPSUserPathOp *ops;

int numOp;

DPSPointer bbox;

DPSUserPathAction action;

DPSDoUserPath provides a convenient interface to user paths.

coords is an array of coordinates for the operands. Do not include the parameters
for thedps_setbbox operation in this array.

numCoords provides the number of entries in thecoords array. The type of the
entries incoords is defined by thenumType parameter.

numType describes the number format used in thecoords andbbox parameters.

ops points to an array of operations, as defined byDPSUserPathOp.

numOp gives the number of entries in the array pointed to byops.

bbox points to four numbers in the format defined bynumType.

action describes the PostScript operator that consumes the created user path.

Table 4 User path procedures

Procedure Functionality

PSDoUserPath
DPSDoUserPath

Sends a user path and operates on it, using
the operator specified in theaction
parameter.

PSHitUserPath
DPSHitUserPath

Sends a user path for one of the hit detection
operators. The operator is specified in the
action parameter.

TK-20 Display PostScript Toolkit for X 15 April 1993

The operator list in theops parameter can, but need not, include adps_setbbox
operation. Ifdps_setbbox is not included,DPSDoUserPath inserts it at the
appropriate place.

Each operator in theops array consumes operands from thecoords array. The
number of coordinates varies for different operands, as shown in Table 5:

The following code fragment usesDPSDoUserPath to draw a 75-unit circle
centered around the point (100,100) with a radius from (100, 100) to (175, 100):

static long coords[9] = {100, 100, 75, 0, 360,

100, 100, 75, 0};

static DPSUserPathOp ops[3] = {dps_arc, dps_moveto,

dps_rlineto};

static long bbox[4] = {25, 25, 175, 175};

DPSDoUserPath (ctxt, (DPSPointer) coords, 9, dps_long,

ops, 3,

(DPSPointer) bbox, dps_ustroke);

Table 5 Operators and coordinates

Operator # of Operands Description

dps_setbbox none see thebbox parameter

dps_moveto 2 x, y

dps_rmoveto 2 dx, dy

dps_lineto 2 x, y

dps_rlineto 2 dx, dy

dps_curveto 6 x1, y1, x2, y2, x3, y3

dps_rcurveto 6 dx1, dy1, dx2, dy2, dx3, dy3

dps_arc 5 x, y, r, ang1, ang2

dps_arcn 5 x, y, r, ang1, ang2

dps_arct 5 x1, y1, x2, y2, r

dps_closepath none

dps_ucache none

Display PostScript Toolkit for X 5 User Paths TK- 21

T
K

PSHitUserPath
DPSHitUserPath Bool DPSHitUserPath (ctx, x, y, radius, coords, numCoords,

numType, ops, numOp, bbox, action)
DPSContext ctx;

double x, y, radius;

DPSPointer coords;

int numCoords;

DPSNumberFormat numType;

DPSUserPathOp *ops;

int numOp;

DPSPointer bbox;

DPSUserPathAction action;

DPSHitUserPath provides a convenient interface to PostScript operators that
test for path intersection without actually painting anything. For more
information, consult sections 4.5.3, “Insideness Testing,” and 7.3.2, “Hit
Detection,” ofPostScript Language Reference Manual, Second Edition.

If radius is zero,DPSHitUserPath uses thex/y form of the operator specified by
action. If radius is nonzero,DPSHitUserPath constructs a circular user path
centered onx andy with the specified radius and uses the aperture form of the
specified action.

If action is dps_ineofill, dps_infill, or dps_instroke, DPSHitUserPath ignores
the parameters specifying the user path and tests against the current path. If
action isdps_inueofill, dps_inufill, ordps_inustroke, DPSHitUserPath uses the
parameters specifying the user path to define the user path being tested against. If
action is anything else,DPSHitUserPath returns False and does nothing else.

SeeDPSDoUserPath for a description of thecoords, numCoords, numType,
ops, numOp, andbbox parameters.

The procedure returns the resulting boolean value.

Note: CallingDPSHitUserPath with radius zero anddps_ineofill, dps_infill, or
dps_in-stroke as the action is semantically equivalent to calling theDPSineofill,
DPSinfill, or DPSinstroke procedure.

TK-22 Display PostScript Toolkit for X 15 April 1993

6 File Preview Procedures

The procedures described in this section simplify rendering PostScript language
files into X drawable objects (windows or pixmaps). Code that uses the
procedures must include<DPS/dpsXpreview.h>, which automatically includes
<DPS/dpsXcommon.h>.

The section starts with a brief introduction to the file preview utilities, followed
by structure and type definitions, a procedure overview, and procedure
definitions.

6.1 Introduction

The first step is optionally to callXDPSSetFileFunctions to supply file access
procedures appropriate to the data source:

• XDPSFileGetsFunc andXDPSFileRewindFunc are the default procedures,
suitable for a separate EPS file.

• XDPSEmbeddedEPSFGetsFunc and
XDPSEmbeddedEPSFRewindFunc handle an EPSF section within a
longer file.

• The application can also define its own procedures that mimic the behavior of
fgets andrewind . In this case, the image source is not limited to files.

An application can render a file into a pixmap or a window. If the application
renders an EPS file into a pixmap, it can useXDPSCreatePixmapForEPSF to
create an appropriately sized pixmap. The%%BoundingBox comment in the
EPS file and thepixelsPerPoint parameter toXDPSCreatePixmapForEPSF
determine the size of the pixmap.XDPSPixelsPerPoint can be called for
information about the resolution of the specified screen.

The application then callsXDPSImageFileIntoDrawable to actually render the
file XDPSImageFileIntoDrawable can render a file into any X window or
pixmap; it is not limited to pixmaps created byXDPSCreatePixmapForEPSF .

If the specified display does not support the Display PostScript extension, the
image area is filled with a 50% gray stipple pattern, or filled with solid 1’s if the
createMask argument toXDPSImageFileIntoDrawable is True.

If the display supports the Display PostScript extension,
XDPSImageFileIntoDrawable starts executing the file, placing the resulting
image into the drawable. The setting ofwaitForCompletion determines what
happens next:

• If waitForCompletion is True, XDPSImageFileIntoDrawable waits until
imaging is complete before it returns.

Display PostScript Toolkit for X 6 File Preview Procedures TK- 23

T
K

• If waitForCompletion is False, XDPSImageFileIntoDrawable waits for the
amount of time specified byXDPSSetImagingTimeout . If imaging is not
complete by this time,XDPSImageFileIntoDrawable returns
dps_status_imaging_incomplete.

If imaging was incomplete,XDPSImageFileIntoDrawable temporarily sets
the imaging context’s status handler so that the variable pointed to by
doneFlag will becomeTrue when the imaging completes. The application
must then callXDPSCheckImagingResults to find the results of imaging.
doneFlag can only change its state as a result of handling a status event from
the DPS/X server.

If XDPSImageFileIntoDrawable returnsdps_status_imaging_incomplete, an
application has to wait untilXDPSCheckImagingResults returns a status that
is notdps_status_imaging_incomplete before it does anything with the context.
The context is otherwise left in an undefined state and imaging might not be
correct.

When an application usesXDPSImageFileIntoDrawable with
waitForCompletion False, using pass-through event delivery is highly
recommended. There can otherwise be substantial delays between the time
doneFlag is set and the time the application has an opportunity to testdoneFlag.
See “Event Dispatching” in section 4.8 ofClient Library Supplement for X for
more information.

An application can stop partial imaging by destroying the context with
DPSDestroySharedContext if it is using the shared context, or with both
DPSDestroyContext andXDPSUnregisterContext if it is not using the
shared context.

While XDPSCreatePixmapForEPSF requires a correctly formed EPS file to
find the bounding box,XDPSImageFileIntoDrawable can image any
single-page PostScript language file into a drawable.

The following code example shows how to create a pixmap for an EPS file and
image the file into that pixmap. This example assumes thatwidget is the widget
that will ultimately display the image,depth is the depth of that widget, andfile is
the opened EPS file. In this example, the penultimate parameter to
XDPSImageFileIntoDrawable is True, soXDPSImageFileIntoDrawable will
not return until the imaging is complete.

Example 1 Creating a pixmap and executing an EPS file

C language code:

int status;

XRectangle bbox, pixelSize;

Pixmap p;

Bool doneFlag;

float pixelsPerPoint;

TK-24 Display PostScript Toolkit for X 15 April 1993

pixelsPerPoint = XDPSPixelsPerPoint(XtScreen(widget));

status = XDPSCreatePixmapForEPSF((DPSContext) NULL,

XtScreen(widget), file, depth, pixelsPerPoint,

&p, &pixelSize, &bbox);

switch (status) {

case dps_status_success:

break;

case dps_status_failure:

fprintf(stderr, "File is not EPSF\n");

exit(1);

case dps_status_no_extension:

fprintf(stderr, "Server does not support DPS\n");

exit(1);

default:

fprintf(stderr, "Internal error %d\n", status);

exit(1);

}

status = XDPSImageFileIntoDrawable((DPSContext) NULL,

XtScreen(widget), p, file, pixelSize.height,

depth, &bbox, -bbox.x, -bbox.y, pixelsPerPoint,

True, False, True, &doneFlag);

switch (status) {

case dps_status_success:

break;

case dps_status_no_extension:

fprintf(stderr, "Server does not support DPS\n");

exit(1);

case dps_status_postscript_error:

fprintf(stderr,

"PostScript execution error in EPSF file\n");

exit(1);

default:

fprintf(stderr, "Internal error %d\n", status);

exit(1);

}

An EPS file can take a long time to execute. Worse, a poorly written EPS file
might contain an infinite loop in its PostScript language code and never finish
executing. One way to protect an application that imports EPS files is to use
XDPSImageFileIntoDrawable with thewaitForCompletion parameterFalse
and allow the user to abort execution. The following code example contains the
framework for doing this.

Display PostScript Toolkit for X 6 File Preview Procedures TK- 25

T
K

ThewaitForCompletion parameter toXDPSImageFileIntoDrawable (located
next to last in the parameter list) has the valueFalse, so the procedure call can
return before the imaging is complete. IfXDPSImageFileIntoDrawable returns
dps_status_imaging_incomplete, the example goes into a subsidiary event
dispatching loop untildoneFlag becomesTrue. An application that gives the user
a way to abort the execution of the EPS file would add an additional exit criterion
to the dispatching loop. The example below assumes that the application has
already set up pass-through event dispatching withXDPSSetEventDelivery .

Example 2 Protecting against incorrect EPS files

status = XDPSImageFileIntoDrawable((DPSContext) NULL,

XtScreen(widget), p, file, pixelSize.height,

depth, &bbox, –bbox.x, -bbox.y, pixelsPerPoint,

True, False, False, &doneFlag);

if (status == dps_status_imaging_incomplete) {

XEvent ev;

do {

XtAppNextEvent(app, &ev);

if (!XDPSDispatchEvent(&ev)) XtDispatchEvent(&ev);

} while (!doneFlag);

status = XDPSCheckImagingResults((DPSContext) NULL,

XtScreen(shell));

}

switch (status) {

/* ... as before ... */

}

6.2 Structures and Type Definitions

XDPSGetsFunction typedef char *(*XDPSGetsFunction) (/*

char *buf,

int n,

FILE *f,

DPSPointer private*/);

XDPSGetsFunction is a procedure type. AnXDPSGetsFunction mimics the
behavior of the standard C library fgets procedure and returns the next line of a
specified file. TheXDPSGetsFunction returnsNULL to indicate the end of the
section to be imaged.

TK-26 Display PostScript Toolkit for X 15 April 1993

XDPSPosition typedef struct {

long startPos;

int nestingLevel;

unsigned long binaryCount;

Bool continuedLine;

} XDPSPosition;

This data structure is used withXDPSEmbeddedEPSFRewindFunc and
XDPSEmbeddedEPSFGetsFunc and is described there.

XDPSRewindFunction typedef void (*XDPSRewindFunction) (/*

FILE *f,

DPSPointer private */);

XDPSRewindFunction is a procedure type. AnXDPSRewindFunction mimics
the standard C libraryrewind procedure and repositions the specified file to the
beginning of the section to be imaged, normally withfseek . When
XDPSImageFileIntoDrawable andXDPSCreatePixmapForEPSF start to
read lines from a file, they first execute theXDPSRewindFunction procedure.

Display PostScript Toolkit for X 6 File Preview Procedures TK- 27

T
K

6.3 Procedure Overview

6.4 Procedures

XDPSCheckImagingResults int XDPSCheckImagingResults (context, screen)

DPSContext context;

Screen *screen;

XDPSCheckImagingResults checks the status of the imaging oncontext.

If context is NULL, the shared context forscreen’s display is used. If a
non-NULL context is passed, it must have been registered with
XDPSRegisterContext .

XDPSCheckImagingResults returns:

Table 6 File preview procedures

Procedure Functionality

XDPSCheckImagingResults Checks the status of the imaging on a
specified context.

XDPSCreatePixmapForEPSF Creates a pixmap for imaging on a
specified screen.

XDPSEmbeddedEPSFRewindFunc
XDPSEmbeddedEPSFGetsFunc

These arerewind andgets procedures
that handle an EPSF section embedded
within a longer file.

XDPSFileRewindFunc
XDPSFileGetsFunc

These are the defaultrewind andgets
procedures that handle a separate EPS
file.

XDPSImageFileIntoDrawable Images a PostScript language file into a
specified drawable.

XDPSPixelsPerPoint Returns the resolution of a specified
screen in pixels per point.

XDPSSetFileFunctions Defines the procedures used by
XDPSCreatePixmapForEPSF and
XDPSImageFileIntoDrawable to
reset a file to its beginning and to read
the next line of the file.

XDPSSetImagingTimeout Determines how long, in milliseconds,
XDPSImageFileIntoDrawable waits
before returning after incomplete
imaging.

TK-28 Display PostScript Toolkit for X 15 April 1993

• dps_status_success if imaging is complete and successful.

• dps_status_imaging_incomplete if imaging is continuing.

• dps_status_postscript_error if imaging is complete but the PostScript
language file being executed contains an error.

• dps_status_illegal_value if the context is not currently involved in
previewing.

• dps_status_unregistered_context if the context has not been registered with
the context manager.

XDPSCreatePixmapForEPSF int XDPSCreatePixmapForEPSF (context, screen, epsf, depth,

pixelsPerPoint, pixmapReturn,

pixelSizeReturn, bboxReturn)

DPSContext context;

Screen *screen;

FILE *epsf;

int depth;

double pixelsPerPoint;

Pixmap *pixmapReturn;

XRectangle *pixelSizeReturn;

XRectangle *bboxReturn;

XDPSCreatePixmapForEPSF creates a pixmap for use on the specified screen.
The%%BoundingBox comment in the file, scaled bypixelsPerPoint, determines
the size of the pixmap.

context can beNULL. In that case, the shared context forscreen’s display is
used. Ifcontext is non-NULL, it must have been registered with
XDPSRegisterContext .

XDPSCreatePixmapForEPSF returns one of the status values shown in
Table 7.

Display PostScript Toolkit for X 6 File Preview Procedures TK- 29

T
K

Table 7 Status return values for XDPSCreatePixmapForEPSF

XDPSCreatePixmapForEPSF returns the size of the pixmap in
pixelSizeReturn (x andy are zero) and the bounding box (in points) in
bboxReturn.

XDPSEmbeddedEPSFGetsFunc
extern char *XDPSEmbeddedEPSFGetsFunc (buf, n, f, data)

char *buf;

int n;

FILE *f;

DPSPointer data;

XDPSEmbeddedEPSFRewindFunc
extern void XDPSEmbeddedEPSFRewindFunc (f, data)

FILE *f;

DPSPointer data;

XDPSEmbeddedEPSFRewindFunc andXDPSEmbeddedEPSFGetsFunc
arerewind andgets procedures that handle an EPS file embedded within a
longer file. To preview a separate EPS file, useXDPSFileRewindFunc and
XDPSFileGetsFunc.

An application can pass therewind andgets procedures to
XDPSSetFileFunctions . TherewindPrivateData andgetsPrivateData
arguments toXDPSSetFileFunctions must both point to the same instance of
anXDPSPosition structure.

Status Description

dps_status_success This value is returned when
XDPSCreatePixmapForEPSF completes
successfully.

dps_status_no_extension If this value is returned, the procedure still
creates a pixmap and returns a suitable size.
However,XDPSImageFileIntoDrawable will
not be able to image to the pixmap since the
Display PostScript extension is not present.

dps_status_illegal_value This status value is returned ifscreen is NULL,
file is NULL, or depth or pixelsPerPoint is less
than or equal to 0.

dps_status_failure This status value is returned if the file specified
by epsf does not contain a%%BoundingBox
comment.

TK-30 Display PostScript Toolkit for X 15 April 1993

The procedures use the document structuring conventions comments
%%BeginDocument and%%EndDocument (DSC version 2.0 or later) to detect
the end of the included file and to identify any subsidiary EPSF sections included
in the EPSF section being executed.

The application must set thestartPos in theXDPSPosition structure to the first
character of the desired EPSF section before calling
XDPSCreatePixmapForEPSF or XDPSImageFileIntoDrawable . The
position must beafter any initial%%BeginDocument comment for this EPSF
section.

ThenestingLevel, continuedLine, andbinaryCount fields are used internally by
the procedures and should not be modified. A call to
XDPSImageFileIntoDrawable modifiesstartPos to be the first character after
the complete EPSF section, or –1 if the EPSF section ended with end-of-file.

XDPSFileGetsFunc extern char *XDPSFileGetsFunc (buf, n, f, private)

char *buf;

int n;

FILE *f;

DPSPointer private;

XDPSFileRewindFunc extern void XDPSFileRewindFunc (f, private)
FILE *f;

DPSPointer private;

XDPSFileGetsFunc andXDPSFileRewindFunc are the defaultgets and
rewind procedures and are appropriate for an EPSF file that is a separate file.
UseXDPSEmbeddedEPSFRewindFunc and
XDPSEmbeddedEPSFGetsFunc while previewing an EPSF section
embedded in a longer file.

If an application has installed different procedures for this behavior,
XDPSFileRewindFunc or XDPSFileGetsFunc can be passed to
XDPSSetFileFunctions to restore the default behavior. TherewindPrivateData
andgetsPrivateData pointers should both beNULL.

Display PostScript Toolkit for X 6 File Preview Procedures TK- 31

T
K

XDPSImageFileIntoDrawable
extern int XDPSImageFileIntoDrawable (context,

screen, dest, file, drawableHeight, drawableDepth,

bbox, xOffset, yOffset, pixelsPerPoint, clear,

createMask, waitForCompletion, doneFlag)

DPSContext context;

Screen *screen;

Drawable dest;

FILE *file;

int drawableHeight, drawableDepth;

XRectangle *bbox;

int xOffset, yOffset;

double pixelsPerPoint;

Bool clear, createMask, waitForCompletion, *doneFlag;

XDPSImageFileIntoDrawable images a PostScript language file into thedest
drawable object—that is, into a pixmap or a window.

If context is NULL, the shared context for the display is used. If a context is
passed, it must have been registered withXDPSRegisterContext .

drawableHeight anddrawableDepth describe the drawable object; the height is
in X pixels.

bbox describes the bounding box of the imaged area, in points.

The image is offset byxOffset andyOffset, which are given in points. The offsets
are often–bbox.x and –bbox.y, which shifts the image to the lower left corner of
the drawable.

pixelsPerPoint defines the scale factor used to image the PostScript language
file.

If clear is True, the area defined bybbox is cleared to white before imaging.

If createMask is True, the drawable must be 1 bit deep, and becomes a mask that
can be used as an X clip mask: each bit that the PostScript interpreter touches
during imaging is set to 1. Ifclear is alsoTrue, all untouched bits withinbbox are
set to 0.

If waitForCompletion is True, XDPSImageFileIntoDrawable waits until
imaging is complete before returning. IfwaitForCompletion is False,
XDPSImageFileIntoDrawable waits for the amount of time specified by
XDPSSetImagingTimeout and then returnsdps_status_imaging_incomplete
if imaging is not complete.

When imaging is complete, agents set up byXDPSImageFileIntoDrawable set
the variable pointed to bydoneFlag to True. The application must then call
XDPSCheckImagingResults to find the results of imaging. The status of
doneFlag can only change as a result of handling a status event from the DPS/X
server.

TK-32 Display PostScript Toolkit for X 15 April 1993

Incorrect imaging can result, and a context can be left in an undefined state, if
anything is done to affect the context between the following times:

• WhenXDPSImageFileIntoDrawable returns
dps_status_imaging_incomplete

• WhenXDPSCheckImagingResults returns a status that is not
dps_status_imaging_incomplete

To cancel imaging, the application can destroy the context by calling
DPSDestroySharedContext or by calling bothDPSDestroyContext and
XDPSUnregisterContext .

When an application usesXDPSImageFileIntoDrawable with
waitForCompletion False, using pass-through event delivery is highly
recommended. There can otherwise be substantial delays between the time
doneFlag is set and the time the application gets the opportunity to test
doneFlag. SeeClient Library Supplement for X, section 5.3, “Use Pass-Through
Event Dispatching,” for more information.

If a display does not support the Display PostScript extension, the image area
determined by thebbox parameter is filled with a 50% gray stipple pattern, or is
filled with solid 1’s ifcreateMask is True.

XDPSImageFileIntoDrawable returns dps_status_success,
dps_status_no_extension, or dps_status_unregistered_context, or one of the
following values:

• dps_status_illegal_value if screen is NULL, drawable is None, file is NULL,
or drawableHeight, drawableDepth, orpixelsPerPoint is less than or equal to
0.

• dps_status_postscript_error if the PostScript language file contains an error.

• dps_status_imaging_incomplete if waitForCompletion is False and the
imaging is not finished within the time-out.

XDPSPixelsPerPoint extern double XDPSPixelsPerPoint (screen)

Screen *screen;

XDPSPixelsPerPoint returns the resolution ofscreen; this value can be passed
to XDPSCreatePixmapForEPSF or XDPSImageFileIntoDrawable .

Note: If the X server reports incorrect resolution information about the screen, as is the
case in some implementations, the incorrect information is propagated by
XDPSPixelsPerPoint .

Display PostScript Toolkit for X 6 File Preview Procedures TK- 33

T
K

XDPSSetFileFunctions extern int XDPSSetFileFunctions (rewindFunction,

rewindPrivateData, getsFunction, getsPrivateData)

XDPSRewindFunction rewindFunction;

DPSPointer rewindPrivateData;

XDPSGetsFunction getsFunction;

DPSPointer getsPrivateData;

XDPSSetFileFunctions defines the procedures that
XDPSCreatePixmapForEPSF andXDPSImageFileIntoDrawable use to reset
a file to its beginning and to read the next line of the PostScript language file.

The values specified byrewindPrivateData andgetsPrivateData are passed as
theprivate parameter to therewind and gets procedures, but are otherwise
ignored.

The default procedures are suitable for use with a file that contains a single EPSF
image. They can be replaced with procedures to handle, for example, an EPSF
section embedded within a longer file.

XDPSSetImagingTimeout extern void XDPSSetImagingTimeout (timeout, maxDoublings)

int timeout, maxDoublings;

XDPSSetImagingTimeout determines how long (in milliseconds)
XDPSImageFileIntoDrawable waits before returning that imaging incomplete.
XDPSImageFileIntoDrawable first waits for the amount of time specified by
timeout and then repeatedly doubles the wait until imaging is complete or until
maxDoublings have occurred.

TK-34 Display PostScript Toolkit for X 15 April 1993

7 The Motif Font Selection Panel

The font selection panel is a Motif dialog box that allows the end user to choose
one of the available Type 1 fonts. It presents the fonts available on the
workstation and any fonts that can be located through thePSRESOURCEPATH
environment variable. (See Appendix A, “Locating PostScript Language
Resources.”) The user can choose a font by selecting the font family, face, and
size, then view the font in the preview window above the selection panels.

From the font selection panel, the user can bring up a font sampler (see section8,
“The Motif Font Sampler”). The font sampler makes it possible to view fonts
with certain characteristics—for example, to view all currently available bold
italic fonts.

The following sections provide information on the font selection panel and the
font sampler, including

• The behavior of the font selection panel and the font sampler.

• The available resources for the font selection panel and the font sampler.

• Callback procedures and associated callback information.

• Procedures for working with the font selection panel and the font sampler.

Note: An application that creates a font selection panel must merge the contents of the
FontSelect defaults file into its own application defaults file. Beginning with the
X11R5 release of the X Window System, this can be done with a#include
directive in the application defaults file.

An application normally creates the font selection panel as a child of a shell
widget, usually a transient shell. The font selection panel can also be elsewhere in
the widget hierarchy. This allows the application to put additional information
around the font selection panel. In that case, the application is responsible for
popping up and popping down the Font Selection Panel.

The following information lets you use the widget:

• The header file is<DPS/FontSB.h>.

• The class pointer isfontSelectionBoxWidgetClass.

• The class name isFontSelectionBox.

• TheFontSelectionBox widget is a subclass ofXmManager.

Display PostScript Toolkit for X 7 The Motif Font Selection Panel TK- 35

T
K

7.1 Using the Motif Font Selection Panel

This section describes the behavior of the font selection panel in more detail.
Information about the resources, callbacks, and procedures that implement the
behavior are documented in the following sections. An example of a font
selection panel is shown in Figure 1.

Figure 1 The font selection panel

7.1.1 Introduction

At the top of the font selection panel, a display region shows the selected font.
This region, which is as wide as the panel, is called thepreview window. The user
can resize the preview window by moving the square handle at the lower right
corner of the preview window. Below the preview window, the Family list region
on the left and the Face list region on the right show the available fonts. Each
time the user chooses a font family from the Family list, the Face list is updated
appropriately. For example, a Face list for Helvetica might include Bold and
Oblique, while a Face list for New Caledonia might include Bold and Italic.

Below the Family list region are a type-in region for selecting a font size and an
option button. Below the Face list region are the Sampler button that brings up
the font sampler and the Preview button. At the bottom of the font selection
panel, the user can choose the OK, Apply, Reset, or Cancel buttons to apply or
undo the selection.

TK-36 Display PostScript Toolkit for X 15 April 1993

7.1.2 The Sampler Button

When the user activates the Sampler button, the font selection panel creates and
displays a font sampler as described in Section 8.

7.1.3 The Preview Button

When the user activates the Preview button, the preview window displays the
currently selected font name in that font. Typingp or P into thesize text field or
double-clicking in the Family or Face list is equivalent to activating the Preview
button. Previewing can be made automatic with theXtNautoPreview resource.
See Table 8 for the font selection panel resource set.

7.1.4 The OK Button

When the user activates the OK button, the font selected in the panel is returned
to the application and the font selection panel disappears, as described below.

1. Any fonts downloaded for preview which do not correspond to the current
selection are undefined.

2. The panel looks for the name of the selected font’s AFM (Adobe Font Metric)
file if theXtNgetAFM resource isTrue and the current settings are for exactly
one font.

3. XtNvalidateCallback is invoked with the current settings in the panel.
FSBCallbackReason is FSBOK.

• If the doit field in the call data is nowFalse, the panel does nothing more and
remains on screen without callingXtNokCallback.

• Otherwise, the panel uses the current selections to update the resources
XtNfontName, XtNfontSize, XtNfontFamily, XtNfontFace,
XtNfontNameMultiple, XtNfontFamilyMultiple, XtNfontFaceMultiple, and
XtNfontSizeMultiple with the current selections.

4. XtNokCallback is called with the current settings.FSBCallbackReason is
FSBOK.

5. If the parent of the font selection panel is a shell, the panel pops down the
shell.

Note: If the parent is not a shell, the application should make the font selection panel
disappear in itsXtNokCallback.

Display PostScript Toolkit for X 7 The Motif Font Selection Panel TK- 37

T
K

7.1.5 The Apply Button

When the user activates the Apply button, the font selection panel performs all
the operations for the OK button but does not pop down the panel’s parent shell.
XtNapplyCallback is called instead ofXtNokCallback. FSBCallbackReason is
FSBApply in all callbacks.

7.1.6 The Reset Button

When the user activates the Reset button, the selected font reverts to the one
selected when the user last chose Apply or OK, or the one last set by the
application, whichever happened most recently.

To accomplish this, the font selection panel performs the following actions:

• First, the panel restores the current settings to those specified by the resources
XtNfontName, XtNfontFamily, XtNfontFace, XtNfontSize,
XtNfontNameMultiple, XtNfontFamilyMultiple, XtNfontFaceMultiple, and
XtNfontSizeMultiple.

• Then all fonts which were downloaded for preview, but which do not
correspond to the current settings, are undefined.

• After that, the panel callsXtNresetCallback with the current settings. The
settings are identical to those passed to the most recent invocation of
XtNokCallback or XtNapplyCallback, or to the most recent settings specified
by the application, whichever happened last.FSBCallbackReason is
FSBReset.

7.1.7 The Cancel Button

When the user activates the Cancel button, the font selection panel performs all
operations listed for the Reset button, but callsXtNcancelCallback instead of
XtNresetCallback. FSBCallbackReason is FSBCancel. If the parent of the font
selection panel is a shell, the panel pops down the shell.

Note: If the parent is not a shell, the application should make the font selection panel
disappear in itsXtNcancelCallback.

7.2 Application Control of the Font Panel

The application can set the currently selected font in the font selection panel. It
does this either by specifying a font name (for example,
“Helvetica-BoldOblique”) for theXtNfontName resource or by specifying a font
family and face (for example “Helvetica” and “Bold Oblique”) for the
XtNfontFamily andXtNfontFace resources. The boolean resource
XtNuseFontName controls whether the font selection panel pays attention to the

TK-38 Display PostScript Toolkit for X 15 April 1993

font name resource or the font family and face resources. The two interface
proceduresFSBSetFontName andFSBSetFontFamilyFace provide convenient
interfaces to these resources.

The currently selected font size can be set with theXtNfontSize resource. This is
a floating point resource, and is therefore difficult to set withXtSetValues. The
interface procedureFSBSetFontSize provides the same functionality and is
easier to use.

The application can also tell the font selection panel to display the fact that
multiple fonts or sizes are currently selected. The boolean resources
XtNfontNameMultiple, XtNfontFamilyMultiple, XtNfontFaceMultiple, and
XtNfontSizeMultiple control this; there are also parameters to the convenience
interface procedures that set these resources.

Setting multiple fonts allows some useful interaction techniques. For example,
assume that the user has selected a block of text that contains several different
fonts. The application sets a multiple font selection in the font selection panel.

• If the user selects a new size but makes no font selection, the application can
make all the text in the block the selected size without changing the fonts.

• If the user selects a new font family but not a new font face, the application
can convert each face in the block to the corresponding face in the new family
by callingFSBMatchFontFace.

The callback data passed to the application indicates when there is a multiple font
or size selection. A multiple font or size selection can result only from the
application’s setting a multiple selection that the user does not subsequently
change; the user cannot convert a nonmultiple selection into a multiple selection.

7.3 Font Downloading and Resource Database Files

Each implementation of the Display PostScript extension has a directory or set of
directories where it looks for Type 1 font outline programs. The fonts described
in these programs are the fonts that appear in the font selection panel. The font
selection panel can also temporarily download other font programs into the
Display PostScript extension.

Generally, users should install new fonts in the normal font outline directory.
However, there can be reasons why a user cannot or does not want to do this:

• The user might not have permission to add files to the outline directory.

• The font program might be the user’s own private copy, and the outline
directory might be shared among different machines.

Display PostScript Toolkit for X 7 The Motif Font Selection Panel TK- 39

T
K

• The user might have so many font programs available, for example on a file
server, that unsophisticated programs would bog down if all the fonts were
installed in the outline directory.

The font selection panel uses thePSRESOURCEPATH environment variable to
locate fonts to download. This environment variable lists directories that contain
PostScript language resource database files, and the resource database files in
turn list the names of files that contain font programs to download. Appendix A
gives full details of these resource database files. When the user chooses a font
that is not resident in the server, the font selection panel automatically downloads
the font into the Display PostScript extension. This is somewhat slower than
using a resident font, but it is otherwise transparent to the user.

In addition to names of font programs, resource database files contain name
information about each font, whether it is downloadable or resident in the server.
This scheme allows the font selection panel to list the font without having to look
into the font program itself. When no name information is found for a resident
font, the font selection panel queries the server for this information, but this
query takes much longer than fetching the information from resource database
files—up to 100 times longer.

For efficient performance, always be sure to provide resource database files for
resident fonts. If creating a font selection panel takes a long time, the reason is
probably that resource database files are not available.

7.4 Font Selection Resources

Table 8 Motif font selection panel resource set

Name Class Default Type Access

XtNautoPreview XmCAutoPreview True XtRBoolean CSG

XtNcontext XmCContext NULL XtRDPSContext CSG

XtNdefaultResourcePath XmCDefaultResourcePath See description XtRString CSG

XtNfontFace XmCFontFace NULL XtRString CSG

XtNfontFaceMultiple XmCFontFaceMultiple False XtRBoolean CSG

XtNfontFamily XmCFontFamily NULL XtRString CSG

XtNfontFamilyMultiple XmCFontFamilyMultiple False XtRBoolean CSG

XtNfontName XmCFontName NULL XtRString CSG

XtNfontNameMultiple XmCFontNameMultiple False XtRBoolean CSG

TK-40 Display PostScript Toolkit for X 15 April 1993

7.4.1 Resource Description

XtNautoPreview If True, the font selection panel previews fonts as soon as the user selects them. If
False, the user must activate the Preview button. Default isTrue.

XtNcontext Provides a context to use for previewing and querying the server for fonts. The
font selection panel changes thedrawable and possibly thedepth for this
context. If the context isNULL, the panel uses the shared context for the display.
Default isNULL.

XtNdefaultResourcePath Provides the defaultpath parameter for locating AFM files and fonts that can be
downloaded. Default is specified at compilation time. See Appendix A, “Locating
PostScript Language Resources,” for more information.

XtNfontSize XmCFontSize 12.0 XtRFloat CSG

XtNfontSizeMultiple XmCFontSizeMultiple False XtRBoolean CSG

XtNgetAFM XmCGetAFM False XtRBoolean CSG

XtNgetServerFonts XmCGetServerFonts True XtRBoolean CSG

XtNmakeFontsShared XmCMakeFontsShared True XtRBoolean CSG

XtNmaxPendingDeletes XmCMaxPendingDeletes 10 XtRInt CSG

XtNpreviewOnChange XmCPreviewOnChange True XtRBoolean CSG

XtNpreviewString XmCPreviewString NULL XtRString CSG

XtNresourcePathOverride XmCResourcePathOverride NULL XtRString CSG

XtNsizeCount XmCSizeCount 10 XtRInt CSG

XtNsizes XmCSizes See description XtRFloatList CSG

XtNshowSampler XmCShowSampler False XtRBoolean CSG

XtNshowSamplerButton XmCShowSamplerButton True XtRBoolean CSG

XtNundefUnusedFonts XmCUndefUnusedFonts True XtRBoolean CSG

XtNuseFontName XmCUseFontName True XtRBoolean CSG

Table 8 Motif font selection panel resource set (Continued)

Name Class Default Type Access

Display PostScript Toolkit for X 7 The Motif Font Selection Panel TK- 41

T
K

XtNfontFace Provides the selected face name. Relevant only ifXtNuseFontName is False. If
NULL, the face is selected by theXtNfaceSelectCallback resource. Default is
NULL.

XtNfontFaceMultiple If True, displays a message that multiple faces are selected. Default isFalse.

XtNfontFamily Provides the selected font family. Relevant only ifXtNuseFontName is False. If
NULL, no family is selected. Default isNULL.

XtNfontFamilyMultiple If True, displays a message that multiple families are selected. Default isFalse.

XtNfontName Provides the selected font name. Relevant only ifXtNuseFontName is True. If
NULL, no font is selected. Default isNULL.

XtNfontNameMultiple If True, displays a message that multiple families and faces are selected. Default
is False.

XtNfontSize Provides selected font size. Default is 12.0. Setting this resource with
XtSetValues is difficult. UseFSBSetFontSize instead.

XtNfontSizeMultiple If True, indicates that multiple sizes are selected. Default isFalse.

XtNgetAFM If True, the font selection panel tries to find an AFM file before calling
XtNokCallback or XtNapplyCallback. Default isFalse.

XtNgetServerFonts If True, list both resident and downloadable fonts. IfFalse, list only
downloadable fonts. Default isTrue.

 XtNmakeFontsShared XtNmakeFontsShared andXtNundefUnusedFonts control where fonts are
defined and whether the font selection panel undefines fonts that were previewed
but not selected.

The possible font selection panel behaviors for values ofXtNundefUnusedFonts
andXtNmakeFontsShared are shown in Table 9.

TK-42 Display PostScript Toolkit for X 15 April 1993

If XtNmakeFontsShared is False, the application must use the same context as
the font selection panel, otherwise loaded fonts will not be available to the
application.

Default isTrue.

XtNmaxPendingDeletes If XtNundefUnusedFonts is True, XtNmaxPendingDeletes specifies the
maximum number of unused fonts allowed to remain before the font selection
panel undefines the least recently loaded font. Making this value too small leads
to repeated downloading during typical browsing. Making this value too large
leads to excessive server memory use. Default is 10.

XtNpreviewOnChange If XtNautoPreview is False, XtNpreviewOnChange controls whether the font
selection panel preview changes when the application changesfontName,
fontFamilyName, fontFaceName, or fontSize. Default isTrue.

XtNpreviewString Determines the string displayed in the preview window. IfNULL, displays the
font name. Default isNULL.

XtNresourcePathOverride If non-NULL, provides a resource path to override the user’s
PSRESOURCEPATH environment variable. Default isNULL.

Table 9 Behaviors for XtNundefUnusedFonts and XtNmakeFontsShared

XtNundefUnusedFonts XtNmakeFontsShared Behavior

False False The panel loads the fonts into private VM and never
undefines fonts.

False True The panel loads the fonts into shared VM and never
undefinesfonts.

True False The panel loads the fonts into private VM and undefines
unused fonts when the user activates the OK, Apply,
Reset, or Cancel buttons, or when there are more unused
fonts than specified in theXtNmaxPendingDeletes
resource.

True True The panel loads the fonts into private VM. When the user
activates the OK or Apply button, all fonts downloaded
into private VM are undefined and the selected font is
downloaded into shared VM. Fonts are also undefined if
the user activates the Reset or Cancel button, or when
there are more unused fonts than specified in the
XtNmaxPendingDeletes resource.

Display PostScript Toolkit for X 7 The Motif Font Selection Panel TK- 43

T
K

XtNsizeCount Determines the number of entries in theXtNsizes resource. Default is 10.

XtNsizes Provides a list of sizes to present in the Size menu. Default is 8, 10, 12, 14, 16,
18, 24, 36, 48, 72.

XtNshowSampler Determines whether the font sampler is shown when the font selection panel pops
up. Tracks the popped-up state of the sampler, and can be used to pop thesampler
up or down. Default isFalse.

XtNshowSamplerButton Determines whether or not the button to bring up the font sampler is visible.
Default isTrue.

XtNundefUnusedFonts Default isTrue. A description is given underXtNmakeFontsShared.

XtNuseFontName Determines whether theXtNfontName or theXtNfontFamily andXtNfontFace
resources are used to choose the initial font to display. Default isTrue.

7.4.2 Children of the Motif Font Panel

The following resources provide access to the child widgets of the font selection
panel. They cannot be changed.

The name of each child widget is the same as the resource name, but without the
Child suffix.

Table 10 Motif font selection panel child resource set

Name Class Type Access

XtNapplyButtonChild XtCReadOnly XtRWidget G

XtNcancelButtonChild XtCReadOnly XtRWidget G

XtNfaceLabelChild XtCReadOnly XtRWidget G

XtNfaceMultipleLabelChild XtCReadOnly XtRWidget G

XtNfaceScrolledListChild XtCReadOnly XtRWidget G

XtNfamilyMultipleLabelChild XtCReadOnly XtRWidget G

XtNfamilyScrolledListChild XtCReadOnly XtRWidget G

XtNokButtonChild XtCReadOnly XtRWidget G

XtNpaneChild XtCReadOnly XtRWidget G

XtNpanelChild XtCReadOnly XtRWidget G

XtNpreviewButtonChild XtCReadOnly XtRWidget G

XtNpreviewChild XtCReadOnly XtRWidget G

XtNresetButtonChild XtCReadOnly XtRWidget G

XtNsamplerButtonChild XtCReadOnly XtRWidget G

XtNseparatorChild XtCReadOnly XtRWidget G

TK-44 Display PostScript Toolkit for X 15 April 1993

7.5 Callback Procedures

The following sections contain information about callback procedures available
for working with the font selection panel. The resource table is followed by a
short description of each callback.

XtNapplyCallback Indicates that the user wants to choose the selected options. The font selection
panel remains.XtNapplyCallback passes a pointer to anFSBCallbackRec as call
data. Applications typically supply the same procedure for theXtNapplyCallback
as forXtNokCallback.

XtNcancelCallback The font selection panel reverts to the values last set withXtNfontName,
XtNfontFamily, XtNfontFace, andXtNfontSize. The font selection panel goes
away after the callback returns.XtNcancelCallback passes a pointer to an
FSBCallbackRec as call data. Applications rarely need to specify
XtNcancelCallback.

XtNcreateSamplerCallback To create the font sampler itself rather than letting the font selection panel create
it an application must provide anXtNcreateSamplerCallback.
XtNcreateSamplerCallback passes a pointer to an
FSBCreateSamplerCallbackRec as call data. The application must fill in the
sampler field with the widget ID of theFontSampler widget, and must fill in the
sampler_shell field with the widget ID of the shell widget that contains the

XtNsizeLabelChild XtCReadOnly XtRWidget G

XtNsizeMultipleLabelChild XtCReadOnly XtRWidget G

XtNsizeOptionMenuChild XtCReadOnly XtRWidget G

XtNsizeTextFieldChild XtCReadOnly XtRWidget G

Table 11 Motif font selection panel callback resource set

Name Class Default Type Access

XtNapplyCallback XtCCallback NULL XtCallbackList C

XtNcancelCallback XtCCallback NULL XtCallbackList C

XtNcreateSamplerCallback XtCCallback NULL XtCallbackList C

XtNfaceSelectCallback XtCCallback NULL XtCallbackList C

XtNokCallback XtCCallback NULL XtCallbackList C

XtNresetCallback XtCCallback NULL XtCallbackList C

XtNvalidateCallback XtCCallback NULL XtCallbackList C

Table 10 Motif font selection panel child resource set (Continued)

Name Class Type Access

Display PostScript Toolkit for X 7 The Motif Font Selection Panel TK- 45

T
K

sampler. An application can use this callback procedure to enclose the font
sampler in another widget—for example, to display an application icon with the
sampler. It can also use this procedure if it has subclassed the font sampler.

XtNfaceSelectCallback After the user chooses a new font family this callback procedure is used to pick
the face selection initially provided for the new family.XtNfaceSelectCallback
passes a pointer to anFSBFaceSelectCallbackRec as call data. If, after this
callback has been invoked, thenew_face field isNULL or is not in
available_faces, the font selection panel chooses a face using these rules:

1. If the new family has a face with the same name as the current face, select it.

2. If not, consider similar attributes in the face name, such as
Roman-Medium-Regular-Book and Italic-Oblique-Slanted. If a face that is
similar to the current face is found, select it.

3. If not, select a face with one of these names, in order: Roman, Medium, Book,
Regular, Light, Demi, Semibold.

4. If no matching name is found, select the first face.

Application developers typically specify anXtNfaceSelectCallback only if they
believe they can perform better face matching than the font selection panel, or if
they want to provide a face selection that is entirely different from the panel’s
selection.

XtNokCallback Indicates that the user wants to choose the selected options. The font selection
panel disappears after the callback returns.XtNokCallback passes a pointer to an
FSBCallbackRec as call data. Applications typically use the same procedure for
theXtNokCallback as for theXtNapplyCallback.

XtNresetCallback The font selection panel reverts to the values last set with XtNfontName,
XtNfontFamily, XtNfontFace, andXtNfontSize. The font selection panel
remains.XtNresetCallback passes a pointer to anFSBCallbackRec as call data.
Applications rarely need to specify anXtNresetCallback.

XtNvalidateCallback If an application needs to validate a font selection before accepting it, the
application should provide anXtNvalidateCallback. The font selection panel
callsXtNvalidateCallback before callingXtNokCallback or XtNapplyCallback.
If doit is False after the call toXtNvalidateCallback, theOK or Apply action is
canceled.XtNvalidateCallback passes a pointer to anFSBValidateCallbackRec
structure as call data.

Typical uses forXtNvalidateCallback include verifying that exactly one font and
size are selected or that an AFM file is available for the selected font. If an
application rejects a selection (by settingdoit to False) it should display a
message that explains why the selection is rejected.

TK-46 Display PostScript Toolkit for X 15 April 1993

7.5.1 Callback Information

This section provides the definitions for structures that are used by the callback
procedures described in the previous section.

FSBCallbackRec typedef struct {

FSBCallbackReason reason;

String family;

String face;

float size;

String name;

String afm_filename;

FSBSelectionType family_selection;

FSBSelectionType face_selection;

FSBSelectionType size_selection;

FSBSelectionType name_selection;

Boolean afm_present;

} FSBCallbackRec;

XtNokCallback, XtNapplyCallback, XtNresetCallback andXtNcancelCallback
(see section 7.5, “Callback Procedures”) pass a pointer to anFSBCallbackRec
structure as call data.

FSBCallbackReason is one ofFSBOK, FSBApply, FSBReset, or FSBCancel.

afm_filename is assigned a value only if theXtNgetAFM resource isTrue.

The…_selection fields containFSBNone if the user has made no selection,
FSBOne if the user has made one selection, orFSBMultiple if the user has made
multiple selections. Multiple selections are possible only if the application has set
the corresponding…Multiple resource and the user has not modified the selection
of that type of information. If the…_selection field isFSBNone orFSBMultiple,
the corresponding data field isNULL or 0.0.

afm_present is True if afm_filename is notNULL, andFalse if afm_filename is
NULL.

Display PostScript Toolkit for X 7 The Motif Font Selection Panel TK- 47

T
K

FSBValidateCallbackRec typedef struct {

FSBCallbackReason reason;

String family;

String face;

float size;

String name;

String afm_filename;

FSBSelectionType family_selection;

FSBSelectionType face_selection;

FSBSelectionType size_selection;

FSBSelectionType name_selection;

Boolean afm_present;

Boolean doit;

} FSBValidateCallbackRec;

XtNvalidateCallback passes a pointer to anFSBValidateCallbackRec as call
data.

All fields in this structure are the same as inFSBCallbackRec. Thedoit field is
initially True.

FSBFaceSelectCallbackRec typedef struct {

String *available_faces;

int num_available_faces;

String current_face;

String new_face;

} FSBFaceSelectCallbackRec;

XtNfaceSelectCallback passes a pointer to anFSBFaceSelectCallbackRec as
call data.

available_faces is a list of faces available in the newly selected family.

num_available_faces is the length of theavailable_faces list.

current_face is the currently selected face. If this face is one of the available
faces, the pointer incurrent_face has the same value as the pointer in the
available_faces list. Comparing the pointers for equality has the same result as
comparing the pointed-to strings.

The callback should fill thenew_face field with one of the entries in the
available_faces field.

TK-48 Display PostScript Toolkit for X 15 April 1993

FSBCreateSamplerCallbackRec
typedef struct {

Widget sampler;

Widget sampler_shell;

} FSBCreateSamplerCallbackRec;

XtNcreateSamplerCallback passes a pointer to an
FSBCreateSamplerCallbackRec as call data.

7.6 Procedures

This section documents the procedures supplied by the font selection panel. For
all the procedures, thewidget parameter must be aFontSelectionBox widget or
subclass of aFontSelectionBox widget.

FSBDownloadFontName Boolean FSBDownloadFontName (w, font_name)

Widget w;

String font_name;

FSBDownloadFontName attempts to download the font specified by
font_name, using the specified font selection panel’s resources to find the font
file and to decide whether to load the font into shared VM.

FSBFindAFM String FSBFindAFM (w, font_name)

Widget w;

String font_name;

FSBFindAFM returns the name of the AFM file for the specified font name, using
the specified font selection panel’s resources to determine where to look for the
file. If no AFM file is found,FSBFindAFM returnsNULL.

FSBFindFontFile String FSBFindFontFile (w, font_name)

Widget w;

String font_name;

FSBFindFontFile returns the name of the font file for the specified font name,
using the specified font selection panel’s resources to determine where to look for
the file. If no font file is found,FSBFindFontFile returnsNULL.

Display PostScript Toolkit for X 7 The Motif Font Selection Panel TK- 49

T
K

FSBFontFamilyFaceToName void FSBFontFamilyFaceToName (w, family, face,

font_name_return)

Widget w;

String family;

String face;

String *font_name_return;

FSBFontFamilyFaceToName returns the font name forfamily andface. If
family andface are not known to the font selection panel,font_name_return is
set toNULL.

FSBFontNameToFamilyFace void FSBFontNameToFamilyFace (w, font_name, family_return,

face_return)

Widget w;

String font_name;

String *family_return;

String *face_return;

FSBFontNameToFamilyFace returns the family and face forfont_name. If
font_name is not known to the font selection panel,family_return and
face_return are set toNULL.

FSBGetFaceList void FSBGetFaceList (w, family, count_return, face_return,

font_return)

Widget w;

String family;

int *count_return;

String **face_return;

String **font_return;

FSBGetFaceList returns a list of the faces and a list of associated font names for
the fonts specified byfamily. When the lists are no longer needed, the caller
should free them withXtFree . The caller should not free the entries in the lists.

FSBGetFamilyList void FSBGetFamilyList (w, count_return, family_return)

Widget w,

int *count_return;

String **family_return;

FSBGetFamilyList returns a list of the font families known to the font selection
panel. When the list is no longer needed, the caller should free it withXtFree .
The caller should not free the entries in the list.

TK-50 Display PostScript Toolkit for X 15 April 1993

FSBGetTextDimensions void FSBGetTextDimensions (w, text, font, size, x, y, dx,

dy, left, right, top, bottom)

Widget w;

String text, font;

double size, x, y;

float *dx, *dy, *left, *right, *top, *bottom;

FSBGetTextDimensions returns information about the size of the text string. It
can be used to avoid a potentiallimitcheck error that could result from executing
charpath on a string.

dx anddy return the change in the current point that would result from showing
the text at thex, y position, using the font at the given size. They are equivalent to
the ones thatstringwidth returns.

left, right, top, andbottom return the bounding box of the imaged text. They are
the ones that would result from the following code:

(text) false charpath flattenpath pathbbox

There is no danger of alimitcheck error if the resulting path exceeds the
maximum allowed path length.

FSBMatchFontFace Boolean FSBMatchFontFace (w, old_face, new_family,

new_face_return)

Widget w;

String old_face;

String new_family;

String *new_face_return;

FSBMatchFontFace attempts to find a face innew_family that is similar to
old_face. It uses the same rules as the defaultXtNfaceSelectCallback, with the
following results:

• If the font selection panel does not knownew_family, new_face_return is
NULL andFSBMatchFontFace returnsFalse.

• If the font selection panel succeeds in finding a close match, it returns the new
face innew_face_return and returns True.

• If the font selection panel cannot find a close match, it stores the closest it can
find (a “regular” face or, failing that, the first face) innew_face_return and
returnsFalse.

Display PostScript Toolkit for X 7 The Motif Font Selection Panel TK- 51

T
K

FSBRefreshFontList void FSBRefreshFontList (w)

Widget w;

FSBRefreshFontList instructs the font selection panel to refresh its font lists.
An application should call this procedure only when new fonts have been
installed.

FSBSetFontFamilyFace void FSBSetFontFamilyFace (w, font_family, font_face,

font_family_multiple, font_face_multiple)

Widget w;

String font_family;

String font_face;

Bool font_family_multiple;

Bool font_face_multiple;

CallingFSBSetFontFamilyFace is equivalent to callingXtSetValues with the
XtNuseFontName, XtNfontFamily, XtNfontFace, XtNfontFamilyMultiple, and
XtNfontFaceMultiple resources.XtNuseFontName is set toFalse.

FSBSetFontName void FSBSetFontName (w, font_name, font_name_multiple)

Widget w;

String font_name;

Bool font_name_multiple;

Calling FSBSetFontName is equivalent to callingXtSetValues with the
XtNuseFontName, XtNfontName, andXtNfontNameMultiple resources.
XtNuseFontName is set toTrue.

FSBSetFontSize void FSBSetFontSize (w, font_size, font_size_multiple)

Widget w;

double font_size;

Bool font_size_multiple;

Calling FSBSetFontSize is equivalent to callingXtSetValues with the
XtNfontSize andXtNfontSizeMultiple resources.

FSBUndefineUnusedFonts void FSBUndefineUnusedFonts (w)

Widget w;

FSBUndefineUnusedFonts undefines all fonts that were downloaded for
previewing but are not the currently previewed font. Since this happens
automatically when the user activates the OK, Apply, Reset, or Cancel button,

TK-52 Display PostScript Toolkit for X 15 April 1993

FSBUndefineUnusedFonts should be called only if the application has popped
the font selection panel down without waiting for the user to activate the OK or
Cancel button.

Display PostScript Toolkit for X 8 The Motif Font Sampler TK- 53

T
K

8 The Motif Font Sampler

The Motif font sampler can be popped up from the font selection panel to view
multiple fonts at the same time. This section provides information about:

• Using the font sampler

• Resources (listing and description)

• Callbacks and procedures

By default, the font selection panel creates the font sampler and pops it up and
down. The application can intervene using theXtNcreateSamplerCallback
procedure of the font panel.

The header file is<DPS/FontSample.h>.

The class pointer isfontSamplerWidgetClass.

The class name isFontSampler.

TheFontSampler widget is a subclass ofXmManager.

8.1 Using the Motif Font Sampler

The font sampler allows the user to view multiple fonts at the same time and to
choose among them. It provides a set of filters that narrow the choices to fonts
with particular characteristics. Figure 2 shows a font sampler displaying the
letters “Abc” using selected filters.

At the top of the font sampler, a text field allows the user to specify the text to be
previewed. Below the type-in region is a display area on the left and a selection
area containing boxes with toggles on the right. The top box allows the user to
select a display criterion; below that are the choices for filtering fonts.

TK-54 Display PostScript Toolkit for X 15 April 1993

Figure 2 The font sampler

To display a set of fonts the user:

1. Types some text into the text field.

2. Chooses a display criterion and one or more font selection criteria, as
described below.

3. Activates the Display button.

If the user activates the Display button during an ongoing display, the font
sampler restarts the display. If the user activates the Stop button, any ongoing
display is stopped.

To remove the font sampler from the screen, activate the Dismiss button.

Display PostScript Toolkit for X 8 The Motif Font Sampler TK- 55

T
K

8.1.1 Display Criteria

When the user activates the Display button, the font sampler begins to show
fonts, using the current display criteria:

• If the All toggle is set, all fonts are displayed.

• If the Selected toggle is set, the font selected in the associated font selection
panel is displayed.

• If the Family toggle is set, all fonts in the family selected in the associated font
selection panel are displayed.

• If the Filter toggle is set, fonts that match the current set of filters are
displayed.

In all cases, the size field and menu control the size of the displayed font.

8.1.2 Font Selection Criteria

The filter check boxes determine which fonts are displayed when the Filter toggle
is set. There are four sets of filters:

• The first set describes general classes of fonts: Roman, Italic, Symbol, Small
Caps, Script, and so on. (Note that “Roman” in this context means not Italic
and not Symbol).

• The second set describes condensed or expanded fonts.

• The third set describes font weights: Light, Medium, Bold, and so on.

• The fourth set is a filter text field that is used for general matching.

A font will be displayed only if it matches one of the check boxes in each set that
has any boxes checked. If the filter text field is not empty, the font name must
also contain the string in that text field. (For the mathematically minded, the
check boxes form a conjunction of disjunctions.)

Consider the following two examples:

• In the first set, the Italic box is checked. In the second set, no boxes are
checked. In the third set, the Bold and Demi boxes are checked. The text field
is empty. This combination matches any italic font that is either bold or demi.
Note that the font sampler does not compare fonts against the filters in the
second set, because no boxes are checked in that set.

• In the first set, Roman and Italic are checked. In the second set, Condensed is
checked. In the third set, no boxes are checked. The text field contains the
string “Garamond”. This combination matches all nonsymbol, condensed
fonts that have the string “Garamond” in their name.

TK-56 Display PostScript Toolkit for X 15 April 1993

The filtering process is based on searching for strings in the font’s full name.
Each check box has a set of strings that it matches. The Italic check box, for
example, matches the strings “Italic”, “Oblique”, “Slanted”, or “Kursiv”.

Note: Font naming does not follow a simple set of rules, so the results of a match might
be unexpected. For example, if the user selected Symbol, any font that contained
the string “Symbol” in its name would be matched, even if the font did not
actually contain symbols. Similarly, a font that was “Ultra Condensed” would
match the Black+ check box because “Ultra” is one of the strings that matches
the Black+ category. (While some fonts use the phrase “Ultra Condensed” to
mean very condensed, others use it to mean ultra-heavy and condensed.)

Any changes to the currently displayed text, the size of the sampled fonts, the
check boxes, or the filter text take effect immediately. However, changing the
display criteria (All, Selected, Family, and Filtered) does not affect the current
display until the user clicks the Display button.

Selecting a filter automatically changes the display type to Filtered.

If the user activates the Reset Filters button, all check boxes are toggled tooff and
the text filter is reset to be empty.

Clicking any mouse button on a displayed font sample displays the font name
above the work area. The font becomes selected in the associated font selection
panel. The size selected in the font selection panel is not affected by the size
selected in the sampler.

8.2 Motif Font Sampler Resources

The following section describes the font sampler resources. The resource set
table is followed by a brief description of each resource.

Table 12 Motif font sampler resource set

Name Class Default Type Access

XtNfontSelectionBox XmCFontSelectionBox NULL XtRWidget C

XtNminimumHeight XmCMinimumHeight 100 XtRDimension CSG

XtNminimumWidth XmCMinimumWidth 100 XtRDimension CSG

XtNnoFamilyFontMessage XmCNoFamilyFontMessage See description XmRXmString CSG

XtNnoFontMessage XmCNoFontMessage “There are no fonts!” XmRXmString CSG

XtNnoMatchMessage XmCNoMatchMessage “No fonts match filters” XmRXmString CSG

XtNnoRoomMessage XmCNoRoomMessage See description XmRXmString CSG

XtNnoSelectedFamilyMessage XmCNoSelectedFamilyMessage See description XmRXmString CSG

Display PostScript Toolkit for X 8 The Motif Font Sampler TK- 57

T
K

8.2.1 Resource Descriptions

XtNfontSelectionBox Specifies theFontSelectionBox widget associated with aFontSampler widget.
This resource must be specified when the font sampler is created, and cannot be
changed.

XtNminimumHeight Specifies the minimum height for the work area. If the user resizes the font
sampler and the work area becomes shorter thanXtNminimumHeight, a vertical
scroll bar appears and allows scrolling. Default is 100.

XtNminimumWidth Specifies the minimum width for the work area. If the user resizes the font
sampler and the work area becomes narrower thanXtNminimumWidth, a
horizontal scroll bar appears and allows scrolling. Default is 100.

XtNnoFamilyFontMessage Specifies the compound string the font sampler displays if the selected font
family has no fonts. This should not happen. Default is“Selected family has no
fonts!”

XtNnoFontMessage Specifies the compound string the font sampler string displays if there are no
fonts to be shown. This should not happen. Default is“There are no fonts!”

XtNnoMatchMessage Specifies the compound string the font sampler displays if no fonts match the
selected filters. Default is “No fonts match filters.”

XtNnoRoomMessage Specifies the compound string the font sampler displays if the work area is too
small to show a single font sample. Default is“Current size is too large or panel
is too small.”

XtNnoSelectedFamilyMessage
Specifies the compound string the font sampler displays if no font family is
selected but the user chooses to display the selected family. Default is“No family
is currently selected.”

XtNnoSelectMessage Specifies the compound string the font sampler displays if no font is selected but
the user chooses to display the selected font. Default is“No font is currently
selected.”

XtNsizeCount Specifies the number of entries in theXtNsizes resource. Default is 10.

XtNnoSelectedFontMessage XmCNoSelectedFontMessage See description XmRXmString CSG

XtNsizeCount XmCSizeCount 10 XtRInt CSG

XtNsizes XmCSizes See description XtRFloatList CSG

Table 12 Motif font sampler resource set (Continued)

Name Class Default Type Access

TK-58 Display PostScript Toolkit for X 15 April 1993

XtNsizes Specifies the list of sizes to present in the menu. Default is 8, 10, 12, 14, 16, 18,
24, 36, 48, 72.

8.2.2 Children of the Motif Font Sampler

The following resources provide access to the descendants of the font selection
panel. These resources cannot be changed. All are of typeXtRWidget.

8.3 Callbacks

XtNdismissCallback XtNdismissCallback indicates that the user has dismissed the font sampler. The
call data isNULL.

Table 13 Motif Font sampler child resource set

Name Class Type Access

XtNallToggleChild XtCReadOnly XtRWidget G

XtNareaChild XtCReadOnly XtRWidget G

XtNclearButtonChild XtCReadOnly XtRWidget G

XtNdismissButtonChild XtCReadOnly XtRWidget G

XtNdisplayButtonChild XtCReadOnly XtRWidget G

XtNfilterBoxChild XtCReadOnly XtRWidget G

XtNfilterFrameChild XtCReadOnly XtRWidget G

XtNfilterTextChild XtCReadOnly XtRWidget G

XtNfilterToggleChild XtCReadOnly XtRWidget G

XtNpanelChild XtCReadOnly XtRWidget G

XtNradioBoxChild XtCReadOnly XtRWidget G

XtNradioFrameChild XtCReadOnly XtRWidget G

XtNscrolledWindowChild XtCReadOnly XtRWidget G

XtNselectedFamilyToggleChild XtCReadOnly XtRWidget G

XtNselectedToggleChild XtCReadOnly XtRWidget G

XtNsizeLabelChild XtCReadOnly XtRWidget G

XtNsizeOptionMenuChild XtCReadOnly XtRWidget G

XtNsizeTextFieldChild XtCReadOnly XtRWidget G

XtNstopButtonChild XtCReadOnly XtRWidget G

XtNtextChild XtCReadOnly XtRWidget G

Display PostScript Toolkit for X 8 The Motif Font Sampler TK- 59

T
K

8.4 Procedures

FSBCancelSampler void FSBCancelSampler (w)

Widget w;

FSBCancelSampler cancels any display currently in progress. It can be used if
the creator of the font sampler disables the sampler. If the user or application
pops down the font selection panel,FSBCancelSampler does not have to be
called; the font selection panel calls the appropriate procedures itself.

TK-60 Display PostScript Toolkit for X 15 April 1993

TK-61

T
K

Appendix A

Locating PostScript
Language Resources

Applications that use the PostScript language need to locate files that describe
and contain PostScript language objects. The files may be Adobe Font Metric
(AFM) files, font outline files, PostScript language procedure sets, forms,
patterns, encodings, or any named PostScript language object. They are
collectively referred to as PostScript language resource files, orresource files.

In many cases, resource files are installed system-wide—for example, the AFM
files for the fonts that reside on a system’s PostScript printers. In other cases,
resource files are private to a user—for example, private font outlines that a user
has purchased or procedure sets for a private application. PostScript language
resource database files, orresource database files, allow applications to locate
resource files uniformly.

This appendix contains information about locating resources, including:

• The structure of resource database files.

• The predefined resource type names.

• Facilities for locating resource database files.

• Procedures and type definitions for locating resources.

• Memory management and error handling.

Appendix B describes themakepsres utility, which you can use to create resource
database files.

TK-62 Display PostScript Toolkit for X 15 April 1993

A.1 Resource Database Files

This section describes resource database files, which can be used to locate
resource files, including:

• Description of the format

• Information about the different sections

• A sample resource database file

A.1.1 Format of a Resource Database File

The following restrictions and requirements exist for the format of a resource
database file:

• No line may exceed 255 characters plus the line termination character.

• A backslash (\) quotes any character. For example, the sequence \ABC
represents the characters ABC. In most sections of the file, you may continue
any line by ending it with a backslash immediately before the newline
character (see section A.1.2, “Components of a Resource Database File”).

• A section terminator begins with a period. If you begin any other line with a
period, you must precede the period with a backslash.

• All lines in the file are case-sensitive.

• To include comments on any line, precede them with a percent sign. To avoid
making a percent sign a comment, precede it with a backslash.

• Trailing blanks and tab characters are ignored everywhere in the file, but they
do count toward the 255-character line length limit.

A.1.2 Components of a Resource Database File

A resource database file consists of several components, which must appear in
the database in the following order:

• An identifying string (required)

• A list of resource types in this resource database file (required)

• A directory path (optional)

• The data for each resource type (required)

A. Locating PostScript Language Resources TK- 63

T
K

Identifying String Component

The first line of a resource database file must contain either the constant string
PS-Resources-1.0 or the constant stringPSResources-Exclusive-1.0. The
difference between the two is explained in section A.3, “Locating Resource
Database Files.”

Resource Types Component

The resource types component lists the resource types described by the file. Each
line is the name of a single resource type, terminated by a newline character. The
resource types component is terminated by a line containing a single period. Any
string can be used to identify a resource type; the predefined resource types are
defined in section A.2.

Directory Component

The directory component is an optional single line that identifies the directory
prefix to be added to all file names in the resource database file. The component
consists of a slash (/) followed by the directory prefix. (In operating systems
where a slash is the first character of a fully specified path, the line must begin
with two slashes.) If the directory component is not present, the directory prefix
becomes, by default, the directory containing the resource database file.

Resource Data Components

Each resource type requires a data component. The data components must be
presented in the same order as the corresponding identifiers in the resource types
component.

Each data component consists of a single line identifying the resource type,
followed by lines of resource data for that type, followed by a line containing a
single period.

Each line of resource data contains:

• The name of the resource. If the name contains an equal sign, precede the
equal sign with a backslash.

• A single or double equal sign (= or = =).

• The name of the file that contains the resource. The file name may be an
absolute or relative path name. If relative, it is interpreted relative to the
directory prefix as specified above in the directory component description.
However, a double equal sign forces the file name to be interpreted as
absolute. In that case, the prefix is not used.

TK-64 Display PostScript Toolkit for X 15 April 1993

For some special predefined resource types the file name is replaced by some
other kind of data; see section A.2. In these cases the directory prefix does not
apply. (It is as if every line of resource data were specified with a double equal
sign.)

A.1.3 Resource Database File Example

This is a sample resource database file for fonts in the Trajan family. The next
section describes the resource types used in this example.

Example A.1 Resource database file for fonts in the Trajan family

PS-Resources-1.0

FontOutline % This section lists resource types

FontPrebuilt

FontAFM

FontFamily

FontBDF

FontBDFSizes

. % This line ends resource type listing

//usr/local/PS/resources

FontOutline % This section lists font outline files

Trajan-Bold=Trajan-Bold

Trajan-Regular=Trajan-Regular

.

FontPrebuilt

Trajan-Bold=Trajan-Bold.bepf

Trajan-Regular=Trajan-Regular.bepf

.

FontAFM

Trajan-Bold=Trajan-Bold.afm

Trajan-Regular=Trajan-Regular.afm

.

FontFamily

Trajan=Bold,Trajan-Bold,Regular,Trajan-Regular

.

FontBDF

Trajan-Regular18-75-75=Trajan-Regular.18.bdf

Trajan-Regular24-75-75=Trajan-Regular.24.bdf

Trajan-Regular36-75-75=Trajan-Regular.36.bdf

Trajan-Regular48-75-75=Trajan-Regular.48.bdf

Trajan-Bold18-75-75=Trajan-Bold.18.bdf

Trajan-Bold24-75-75=Trajan-Bold.24.bdf

Trajan-Bold36-75-75=Trajan-Bold.36.bdf

Trajan-Bold48-75-75=Trajan-Bold.48.bdf

.

FontBDFSizes

Trajan-Regular=18-75-75,24-75-75,36-75-75,48-75-75

Trajan-Bold=18-75-75,24-75-75,36-75-75,48-75-75

A. Locating PostScript Language Resources TK- 65

T
K

A.2 Predefined Resource Types

The following table lists the name and contents of the predefined resource types.
Each resource line contains the name of the resource, a single equal sign, and the
name of the file containing the resource or other relevant information, as
described in the table. Examples for several of the resource types can be found in
section A.1.3, “Resource Database File Example.”

Table A.1 Resource types

Resource Contents

FontOutline The file contains PostScript language character outline programs.

FontPrebuilt The file contains a set of prebuilt font bitmaps. Currently, only the Display
PostScript system uses this format.

FontAFM The file is an AFM file.

FontBDF The file contains bitmap font data in Bitmap Distribution Format (BDF).

FontBDFSizes If the resource type isFontBDFSizes, the file name in the resource line is replaced
by a list of theFontBDF resources in the current file. Each entry consists of the
point size, thex resolution, and they resolution of the BDF file, separated by a single
hyphen (–) character. The entries are separated with a single comma (,) character.
Each entry may be appended to the resource name on the line to yield a valid
FontBDF resource. The directory prefix does not apply to this resource type.

In the sample file in A.1.3, “Resource Database File Example,” the line

Trajan-Regular=18-75-75,24-75-75,36-75-75,48-75-75

indicates that the Trajan-Regular font has four BDF files available, at 18, 24, 36 and
48 points. All files are at 75 dots per inch in x and y. The name of each FontBDF
resource is formed by concatenating Trajan-Regular with one of the size
specifications, yielding, for example,

Trajan-Regular18-75-75

FontFamily If the resource type isFontFamily, the file name in the resource line is replaced by a
list of FontOutline resource names in the current file that belong to this font family.
Each resource name is preceded by the face name for the font. The names are
separated by a single comma (,) character; use a backslash to quote a comma within
a font name. The directory prefix does not apply to this resource type.

In the sample file in section A.1.3, “Resource Database File Example,” the line

Trajan=Bold,Trajan-Bold,Regular,Trajan-Regular

indicates that the Trajan family contains two faces: Bold, with the font name
Trajan-Bold, and Regular, with the font name Trajan-Regular. The correspondence
between face names and font names is not always as straightforward as in this
example.

TK-66 Display PostScript Toolkit for X 15 April 1993

Further predefined types will be added to represent additional resources as
needed.

A.3 Locating Resource Database Files

A user’sPSRESOURCEPATH environment variable consists of a list of
directories separated by colons. (Systems without environment variables must
use an alternate way of expressing the user’s preference.) Procedures that look
for resource database files search each directory named in the
PSRESOURCEPATH environment variable.

Each component (for example, the font selection panel and the TranScript™

software package) has a default place where it looks for resource files. The
default places may be different for each component and are determined in a
component-dependent way, usually at system build time.

Two adjacent colons in aPSRESOURCEPATH path represent the list of default
places in which a component looks for PostScript language resources.

ThePSRESOURCEPATH variable defaults to “::” if no value is specified. This
is the normal value for users who have not installed private resources. Users with
private resources should end the path with a double colon if they want their
resources to override the system defaults, or begin it with a double colon if they
don’t want to override system defaults. Colons in the path can be quoted in a
system-dependent way; on UNIX® systems, a backslash quotes colons.

Form The file contains aForm definition; see section 3.9.2 ofPostScript Language
Reference Manual, Second Edition.

Pattern The file contains aPattern definition; see section 3.9.2 ofPostScript Language
Reference Manual, Second Edition.

Encoding The file contains a character set encoding; see section 3.9.2 ofPostScript Language
Reference Manual, Second Edition.

ProcSet The file contains a named set of PostScript language procedures implementing some
piece of an application’s prolog.

mkpsresPrivate Themakepsres utility generates and manipulates resource database files. This
section contains private information stored bymakepsres to help it in future
invocations. For more information aboutmakepsres, consult Appendix B.

Table A.1 Resource types (Continued)

Resource Contents

A. Locating PostScript Language Resources TK- 67

T
K

A typical PSRESOURCEPATH is the following:

::/proj/ourproj/PS:/user/smith/ps

The sample path above instructs procedures that locate resource database files to
first look in the default place, wherever it may be, then to search the directory
/proj/ourproj/PS, and then search the directory
/user/smith/ps. The user does not need to know the location of the default
resource database files.

On UNIX systems, resource database files end with the suffix.upr (for UNIX
PostScript resources). The principal resource database file in a directory is named
PSres.upr.

• If the first line of aPSres.upr file is PS-Resources-Exclusive-1.0, the
PSres.upr file is the only resource database file in its directory.

• If the first line of aPSres.upr file is PS-Resources-1.0, or if there is no
PSres.upr file, any file in the same directory with the suffix.upr is a resource
database file. For example, the sample file shown in A.1.3, “Resource
Database File Example,” might be calledTrajan.upr.

If a PSres.upr file begins withPS-Resources-Exclusive-1.0, the resource
location procedures run more quickly since they don’t need to look for other.upr
files. However, users will then have to updatePSres.upr whenever new resources
are installed.

A.4 Type Definitions and Procedures for Resource Location

If you are writing an application or a library that needs to locate PostScript
language resource files, use the resource location librarylibpsres.a. This library
contains procedures that locate and parse resource database files and return lists
of resource files. The header file forlibpsres.a is <DPS/PSres.h>.

Resource location procedures represent resource types as character strings. This
allows matching of arbitrary strings in the resource type list of a resource
database file. Several variables are available for matching:

extern char *PSResFontOutline, *PSResFontPrebuilt,

*PSResFontAFM,*PSResFontBDF, *PSResFontFamily,

*PSResFontBDFSizes,*PSResForm, *PSResPattern,

*PSResEncoding, *PSResProcSet;

The variables evaluate to the appropriate character string; for example, the value
of PSResFontOutline is “FontOutline”. Using the variables instead of the strings
themselves allows the compiler to find spelling errors within your application
that would otherwise go undetected.

TK-68 Display PostScript Toolkit for X 15 April 1993

In the following procedure definitions, the phraseresource location procedure
refers toListPSResourceFiles , EnumeratePSResourceFiles , or
ListPSResourceTypes , but not toCheckPSResourceTime .

A.4.1 Type Definitions

PSResourceEnumerator typedef int *(PSResourceEnumerator)(/*

char *resourceType,

char *resourceName,

char *resourceFile,

char *private*/);

A PSResourceEnumerator procedure is used with
EnumeratePSResourceFiles .

PSResourceSavePolicy typedef enum {

PSSaveReturnValues,

PSSaveByType,

PSSaveEverything

} PSResourceSavePolicy;

PSResourceSavePolicy enumerates the save policies used by
SetPSResourcePolicy .

A.4.2 Procedures

CheckPSResourceTime int CheckPSResourceTime (psResourcePathOverride,

 defaultPath)

char *psResourcePathOverride;

char *defaultPath;

CheckPSResourceTime checks whether the access times of directories in a
path have changed since the directories were read in.

psResourcePathOverride provides a path that overrides the environment
resource path. On UNIX systems, it replaces thePSRESOURCEPATH
environment variable. The value is usuallyNULL. To quote colons in the path,
use a backslash.

defaultPath is the path that is inserted between adjacent colons in the resource
path. It may beNULL.

• If either path value differs from that used in the previous call to any procedure
in this library,CheckPSResourceTime returns 1.

A. Locating PostScript Language Resources TK- 69

T
K

• If neither path has changed since the previous call to the library,
CheckPSResourceTime determines whether the modification time for any
directory described in the paths is more recent than the latest modification
time when the directories were scanned for resource files and, if so, returns 1.
OtherwiseCheckPSResourceTime returns 0.

CheckPSResourceT ime does not free storage and cannot make invalid storage
that was previously returned byListPSResourceFiles or
ListPSResourceTypes .

If CheckPSResourceTime returns 1, the caller can then call

FreePSResourceStorage(1)

This forces future calls to resource location procedures to reload all resource
databases.

EnumeratePSResourceFiles void EnumeratePSResourceFiles (psResourcePathOverride,

defaultPath, resourceType, resourceName,

enumerator, private)

char *psResourcePathOverride;

char *defaultPath;

char *resourceType;

char *resourceName;

PSResourceEnumerator enumerator;

char *private;

EnumeratePSResourceFiles lists PostScript language files giving applications
complete control over saving file names. Applications that do not need this level
of control should useListPSResourceFiles instead.

EnumeratePSResourceFiles calls the procedure specified byenumerator for
each resource that matches theresourceType and (if non-NULL) resourceName.
The enumerator procedure has to copy the resource name and resource file into
nonvolatile storage before returning. TheresourceType parameter is passed to
the enumerator for information only; it does not have to be copied. If the
enumerator procedure returns a nonzero value,EnumeratePSResourceFiles
returns without enumerating further resources.

EnumeratePSResourceFiles causes minimal state to be saved—for example,
which resource files contain which types of resources. To free the saved state, call

FreePSResourceStorage(1)

psResourcePathOverride provides a path that overrides the environment
resource path. On UNIX systems, it replaces thePSRESOURCEPATH
environment variable. The value is usuallyNULL. To quote colons in the path,
use a backslash.

TK-70 Display PostScript Toolkit for X 15 April 1993

defaultPath is the path inserted between adjacent colons in the resource path.
The value may beNULL.

resourceType indicates the type of resource desired.

resourceName indicates the requested resource name. If the name isNULL, the
procedure returns a list of all resource names for the type inresourceType.

enumerator provides a procedure that is called for each resource name.

private specifies data to be passed uninterpreted to the enumerator.

FreePSResourceStorage void FreePSResourceStorage (everything)

int everything;

The subroutine library normally keeps internal state to avoid reading directory
files each time. CallingFreePSResourceStorage frees any storage currently
used.

• If everything is nonzeroFreePSResourceStorage completely resets its
state. No information is retained.

• If everything is zero,FreePSResourceStorage allows the library to keep
minimal information, normally about which files in the search path contain
which resource types.

Calling a resource location procedure with a different value of
psResourcePathOverride or of defaultPath from the previous call implicitly
makes the call

FreePSResourceStorage(1)

FreePSResourceStorage invalidates any string pointers returned by previous
calls toListPSResourceFiles or ListPSResourceTypes .

ListPSResourceFiles int ListPSResourceFiles (psResourcePathOverride,

defaultPath, resourceType, resourceName,

resourceNamesReturn, resourceFilesReturn)

char *psResourcePathOverride;

char *defaultPath;

char *resourceType;

char *resourceName;

char **resourceNamesReturn;

char **resourceFilesReturn;

ListPSResourceFiles lists PostScript language resource files.

A. Locating PostScript Language Resources TK- 71

T
K

psResourcePathOverride provides a path that overrides the environment
resource path. On UNIX systems, it replaces thePSRESOURCEPATH
environment variable. The value is usuallyNULL. To quote a colon in the path,
use a backslash.

defaultPath is the path that is inserted between adjacent colons in the resource
path.defaultPath may beNULL.

resourceType indicates the type of resource desired.

resourceName indicates the desired resource name. IfresourceName is NULL,
ListPSResourceFiles returns a list of all resource names of type
resourceType.

resourceNamesReturn returns a list of the resource names.

resourceFilesReturn returns a list of the resource file names as absolute path
names. Backslash quotes are removed from all strings, with the exception of
backslashes that precede commas in the file name. This supports comma quoting
for theFontFamily resource type.

TheresourceNamesReturn andresourceFilesReturn arrays always have the
same number of entries, equal to the return value.

TheresourceNamesReturn andresourceFilesReturn arrays should be freed
with PSResFree when they are no longer needed. The individual strings should
not be freed. They remain valid until a resource location procedure is called with
a different value ofpsResourcePathOverride or defaultPath, or until
FreePSResourceStorage is called.

If a particular resource name occurs more than once in the same or in different
resource directories, all occurrences are returned, in the following order:

• All resources for a particular directory entry in the resource search path occur
before any entries for a later directory.

• For a particular directory, all resources found inPSres.upr files occur before
any entries found in subsidiary resource directory files.

ListPSResourceFiles returns the number of entries in the
resourceNamesReturn array. A return value of 0 means that no resources
meeting the specification could be found. In that case,resourceNamesReturn
andresourceFilesReturn are not modified.

Applications that need complete control over saving the file names should use
EnumeratePSResourceFiles .

TK-72 Display PostScript Toolkit for X 15 April 1993

ListPSResourceTypes int ListPSResourceTypes (psResourcePathOverride,

defaultPath, resourceTypesReturn)

char *psResourcePathOverride;

char *defaultPath;

char **resourceTypesReturn;

Applications can callListPSResourceT ypes to determine which resource types
are available.

psResourcePathOverride provides a path that overrides the environment
resource path. On UNIX systems, that path replaces thePSRESOURCEPATH
environment variable. The value is usuallyNULL. To quote colons in the path,
use a backslash.

defaultPath is the path that is inserted between adjacent colons in the resource
path. The value may beNULL.

resourceTypesReturn returns a list of resource types.

TheresourceTypesReturn array should be freed withPSResFree when it is no
longer needed. The individual strings should not be freed; they remain valid until
a resource location procedure is called with a different value of
psResourcePathOverride or of defaultPath, or until
FreePSResourceStorage is called witheverything nonzero.

The returned resource types are merged to result in a nonduplicating list. The
special typemkpsresPrivate is never returned.

ListPSResourceTypes returns the number of entries in the
resourceTypesReturn array. A return value of 0 means that no resource types
could be found. In that case,resourceTypesReturn is not modified.

SetPSResourcePolicy void SetPSResourcePolicy (policy, willList, resourceTypes)

PSResourceSavePolicy policy;

int willList;

char **resourceTypes;

An application can useSetPSResourcePolicy to provide the resource library
with information about the expected pattern of future calls to
ListPSResourceFiles .

policy determines the save policy used. It is of typePSResourceSavePolicy and
may be one of the following:

• PSSaveEverything. The first timeListPSResourceFiles or
ListPSResourceTypes is called with a particular set of values for
psResourcePathOverride anddefaultPath, it reads all resource directory
files in the specified paths and caches all the information in them. Future calls
will use the cache and not read the file system.

A. Locating PostScript Language Resources TK- 73

T
K

• PSSaveByType. ListPSResourceFiles saves information about the
resource types inresourceTypes. Calls toListPSResourceFiles for
resource types not in theresourceTypes list may or may not save values. In
that case, it is undefined whether and how much information is saved.

• PSSaveReturnValues. ListPSResourceFiles saves the returned strings but
may save little else. Subsequent calls usually access the file system. It is
undefined whether and how much other information is saved, but applications
can expect it to be minimal.

You cannot completely disable saving since the saved strings are returned by
ListPSResourceFiles .

willList is nonzero if the application expects to list resources by passingNULL to
ListPSResourceFiles in theresourceName parameter.

resourceTypes is aNULL-terminated list of the resource types the application
expects to use, orNULL.

Note thatwillList, policy, andresourceTypes are just hints;
ListPSResourceFiles works correctly regardless of their values. It may,
however, work more slowly.

Calling SetPSResourcePolicy more than once changes the future behavior of
ListPSResourceValues but has no effect on the previously saved state.

Applications that need complete control over saving the names can use
EnumeratePSResourceFiles instead ofListPSResourceFiles .

A.5 Memory Management and Error Handling

An application using the resource location library may provide its own
implementation ofmalloc , realloc , andfree by assigning values to the external
variablesPSResMalloc, PSResRealloc, andPSResFree.

TK-74 Display PostScript Toolkit for X 15 April 1993

PSResMallocProc typedef char *(*PSResMallocProc)(/*

int size */);

extern PSResMallocProc PSResMalloc;

PSResReallocProc typedef char *(*PSResReallocProc)(/*

char *ptr,

int size */);

extern PSResReallocProc PSResRealloc;

PSResFreeProc typedef void (*PSResFreeProc)(/*

char *ptr */);

extern PSResFreeProc PSResFree;

The procedures must provide the following additional semantics beyond that
supplied by the system allocation routines:

• PSResMalloc andPSResRealloc must never returnNULL; if they return at
all they must return the storage. They must not returnNULL even if passed a
zero size.

• PSResFree must return if passedNULL, and do nothing else.

• PSResRealloc must allocate storage if passed aNULL pointer.

The default routines give an error message and terminate if they are unable to
allocate the requested storage.

If the resource location library encounters a resource database file that does not
conform to the standard format, a warning handler is called. The default warning
handler prints a warning message with the file name onstderr and continues,
ignoring information it cannot parse. A different warning handler can be installed
by assigning a value to the external variablePSResFileWarningHandler.

PSResFileWarningHandlerProc
typedef void (*PSResFileWarningHandlerProc)

(/* char *fileName,

char *extraInfo*/);

extern PSResFileWarningHandlerProc

 PSResFileWarningHandler;

TK-75

T
K

Appendix B

The makepsres Utility

Themakepsres utility creates resource database files. Resource database files can
be used to locate PostScript language resources that are used by the font selection
panel and other Adobe software. If an application needs to locate PostScript
language resources, it uses the facilities described in Appendix A, “Locating
PostScript Language Resources.”

This appendix provides information about themakepsres utility in a format
similar to a UNIX manual page.

To invokemakepsres in the default mode, type:

makepsres

Resource installation scripts should invokemakepsres automatically.

B.1 Overview of Functionality

The complete command line syntax formakepsres is:

makepsres [options] directory ...

makepsres creates a resource database file containing all the resources in all
directories specified on the command line.

• If the list of directories contains “–”, makepsres reads fromstdin and expects a
list of directories separated by space, tab, or newline.

• If the list of directories is empty, it is taken to be the current directory.

• If all specified directories have a common initial prefix,makepsres extracts it
as a directory prefix in the new resource database file.

makepsres uses existing resource database files to assist in identifying files. By
default,makepsres creates a new resource database file containing all of the
following that apply:

• Resource files found in the directories on the command line.

TK-76 Display PostScript Toolkit for X 15 April 1993

• Resource files pointed to by the resource database files in the directories on
the command line.

• Resource entries found in the input resource database files. These entries are
copied if the files they specify still exist and are located in directories not
specified on the command line.

makepsres uses various heuristics to identify files. A file that is of a private
resource type or that does not conform to the standard format for a resource file
must be specified in one of the following ways:

• Be identified by the user by runningmakepsres in interactive mode

• Have been preloaded into a PostScript resource database file used for input

• Begin with the following line:

%!PS-Adobe-3.0 Resource-<resource-type>

If you runmakepsres in discard mode (using the–d command line option), it
does not copy resource entries from the input resource database files. In that case,
the output file consists only of entries from the directories on the command line.
The input resource database files are only used to assist in identifying files.

If you runmakepsres in keep mode (using the–k command line option), it
includes in the output file all resource entries in the input resource database files,
even entries for files that no longer exist or are located in directories specified on
the command line.

B.2 Command Line Options

–o filename Writes the output to the specified file name. “–o – ” writes tostdout. If the –o
option is not specified,makepsres creates aPSres.upr file in the current directory
and writes the output to that file.

–f filename Uses information from the specified file to assist in resource typing. The file must
be in PostScript resource database file format (see A.1.1, “Format of a Resource
Database File”). Multiple –f options may be specified. “–f – ” usesstdinas an
input file and may not be used if “–” is specified as a directory on the command
line. It is not necessary to use–f for files that are in a directory on the command
line.

–dir filename Specifies thatfilename is a directory. This option is only needed if the directory
name can be confused with one of the command line options.

–d Specifies discard mode. If –d is used,makepsres does not copy resource entries
from the input resource database files. In that case, the output file consists solely
of entries from the directories on the command line. The input resource database
files are only used to assist in identifying files.

B. The makepsres Utility TK- 77

T
K

–e Tellsmakepsres to mark the resultingPSres.upr file as exclusive. This option
makes the resource location library run more quickly since it does not have to
look for other resource database files. It becomes necessary, however, to run
makepsres whenever new resources are added to the directory, even if the
resources come with their own resource database file.

–i Specifies interactive mode. In interactive mode, the user is queried for the
resource type of any file encountered bymakepsres that it cannot identify. If –i is
not specified,makepsres assumes an unidentifiable file is not a resource file.

–k Specifies keep mode. If–k is used,makepsres includes all resource entries from
the input resource database files in the output. This includes entries for files that
no longer exist.

–nr Specifies nonrecursive mode.makepsres normally acts recursively: it looks for
resource files in subdirectories of any specified directory. If–nr is used,
makepsres does not look in subdirectories for resource files.

–nb Does not back up the output file if it already exists.

–p Specifies no directory prefix. If–p is used,makepsres does not try to find a
common directory prefix among the specified directories.

–q Ignores unidentifiable files instead of warning about them; “be quiet.”

–s Specifies strict mode. If–s is used,makepsres terminates with an error if it
encounters a file it cannot identify.

TK-78 Display PostScript Toolkit for X 15 April 1993

