

Smooth Shading
Adobe® Developers Association
Technical Note #5600

26 March 1997
Covered under the Limited Right of Access Agreement.

10 October 1997

Technical Note #5600
LanguageLevel 3
PN LPS5600

Adobe Systems Incorporated

Adobe Systems Europe Limited
Adobe House, Mid New Cultins
Edinburgh EH11 4DU
Scotland, United Kingdom
+44-131-453-2211

Adobe Systems Japan
Yebisu Garden Place Tower
4-20-3 Ebisu, Shibuya-ku
Tokyo 150 Japan
+81-3-5423-8100

Corporate Headquarters
345 Park Avenue
San Jose, CA 95110-2704
(408) 536-6000 Main Number

Eastern Regional Office
24 New England
Executive Park
Burlington, MA 01803
(617) 273-2120

A

do
be

 S
ys

te
m

s
In

co
rp

or
at

ed

Copyright © 1997 Adobe Systems Incorporated. All rights reserved.

NOTICE: All information contained herein is the property of Adobe Systems Incorporated.

No part of this publication (whether in hardcopy or electronic form) may be reproduced or transmitted,
in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written consent of the publisher.

PostScript is a registered trademark of Adobe Systems Incorporated. All instances of the name
PostScript in the text are references to the PostScript language as defined by Adobe Systems
Incorporated unless otherwise stated. The name PostScript also is used as a product trademark for
Adobe Systems’ implementation of the PostScript language interpreter.

Adobe, PostScript, PostScript 3, and the PostScript logo are trademarks of Adobe Systems
Incorporated. Apple and Macintosh are trademarks of Apple Computer, Inc. registered in the U.S. and
other countries. All other trademarks are the property of their respective owners.

Contents

A

dobe S
ystem

s Incorporated

1 Smooth Shading 13
Overview of Smooth Shading 13
Benefits of Using Smooth Shading 16

2 Implementing Smooth Shading 17
Shfill Operator 17
Pattern Dictionaries 21
Painting With a Pattern Dictionary 21
Shading Dictionaries 23
ColorSpace Key for Shading Dictionaries 24
ShadingType 1: Function-Based Shading 26
ShadingType 2: Axial Shading 29
ShadingType 3: Radial Shading 32
ShadingType 4: Free-Form Gouraud-Shaded Triangle Meshes 36
ShadingType 5: Lattice-Form Gouraud-Shaded Triangle Meshes 44
ShadingType 6: Coons patch meshes 47
ShadingType 7: Tensor Product Patch Meshes 55
Functions 59
Function Dictionaries 60
FunctionType 0: Sampled Functions 60
FunctionType 2: Exponential Interpolation Function 66
FunctionType 3: 1-Input Stitching Function 67
Currentsmoothness and Setsmoothness Operators 71

3 Smooth Shading Tips 72
iii

A

do
be

 S
ys

te
m

s
In

co
rp

or
at

ed
iv Contents 10 October 1997

Figures
A
dobe S

ystem
s Incorporated
 Figure 1 Hierarchy of dictionaries used for smooth shading 17
 Figure 2 Inputs to the shfill operator 18
 Figure 3 Inputs to the makepattern and setpattern operators 21
 Figure 4 Defining a new triangle (f = 0) 38
 Figure 5 How the value of the edge flag determines which edge is used for the next tri-

angle 39
 Figure 6 Varying the value of the edge flag to create different shapes 41
 Figure 7 Simple lattice forms 44
 Figure 8 Coordinate mapping from a unit square to a four-sided patch 47
 Figure 9 Patch appearance, painted area, and boundary 49
 Figure 10 Color values and edge flags in Coons patch meshes 50
 Figure 11 How the value of edge flag, f, determines the edge for the next patch 53
 Figure 12 Pij control points 56
 Figure 13 Mapping input values to function results (output values) 62
 Figure 14 Mapping with the Decode Array 65
v

A

do
be

 S
ys

te
m

s
In

co
rp

or
at

ed
vi Figures 10 October 1997

Tables
A
dobe S

ystem
s Incorporated
Table 1 Keys for the PatternType 2 Pattern dictionary 21
Table 2 Keys for ShadingType 1 Shading dictionaries 26
Table 3 Keys for ShadingType 2 Shading dictionaries 29
Table 4 Keys for ShadingType 3 Shading dictionaries 32
Table 5 Keys for ShadingType 4 Shading dictionaries 36
Table 6 Edge flag values for each triangle in Mesh 1 40
Table 7 Edge flag values for each triangle in Mesh 2 40
Table 8 Keys for ShadingType 5 Shading dictionaries 45
Table 9 Keys for ShadingType 6 Shading dictionaries 49

Table 10 Coordinates for adjacent patches 52
Table 11 Keys for ShadingType 7 Shading dictionaries 57
Table 12 Keys for FunctionType 0 Function dictionaries 61
Table 13 Keys for FunctionType 2 Function dictionaries 66
Table 14 Keys for FunctionType 3 Function dictionaries 68
vii

A

do
be

 S
ys

te
m

s
In

co
rp

or
at

ed
viii Tables 10 October 1997

Examples
A
dobe S

ystem
s Incorporated
Example 1 Using shfill for smooth shading 19
Example 2 Using shfill in a PaintProc procedure 20
Example 3 Using a PatternType 2 Pattern dictionary for shading 22
Example 4 Function-based shading (ShadingType 1) 28
Example 5 Axial shading (ShadingType 2) 31
Example 6 Radial shading (ShadingType 3) 35
Example 7 Free-form Gouraud-shaded triangle meshes (ShadingType 4) 43
Example 8 Lattice-form Gouraud-shaded triangle meshes (ShadingType 5) 46
Example 9 Coons patch meshes (ShadingType 6) 54

Example 10 Tensor Product patch meshes (ShadingType 7) 58
Example 11 Sampled function (FunctionType 0) 65
Example 12 Exponential Interpolation function (FunctionType 2) 67
Example 13 Stitching function (FunctionType 3) 70
ix

A

do
be

 S
ys

te
m

s
In

co
rp

or
at

ed
x Figures 10 October 1997

Preface
A
dobe S

ystem
s Incorporated
This Document

This document provides a detailed description of smooth shading, a
LanguageLevel 3 feature of Adobe® PostScript® that enables a developer to
add higher-quality monochrome or color gradient fills to an application.

Intended Audience

This document is written for software developers who are interested in
learning about smooth shading or adding smooth shading capabilities to an
application that supports PostScript display or printing devices. It is assumed
that the developer has an adequate background in mathematics. This
knowledge will help in the understanding of the complex formulae and
functions used to describe the implementation of the shading methods.

Organization of This Document

Section 1, “Smooth Shading,” provides an overview of the LanguageLevel 3
feature and all of its parts. A comparison of current and previous methods of
shading is made. The uses for, and benefits of, this feature in a PostScript
language environment are also covered.

Section 2, “Implementing Smooth Shading,” defines the PostScript language
extensions for smooth shading. Each shading method and the underlying
mathematical elements supporting the method are described in detail. Several
examples defining dictionary parameters (keys) are included as well as
several workable code samples for each of the supported shading methods.
The examples shown include use of the Pattern and Function dictionaries,
and the shfill, makepattern, and setpattern operators.

Section 3, “Smooth Shading Tips,” gives helpful information on using
smooth shading and functions and selecting the best smooth shading method
for specific application needs.
xi

A

do
be

 S
ys

te
m

s
In

co
rp

or
at

ed

Related Publications

Supplement: PostScript Language Reference Manual (LanguageLevel 3
Specification and Adobe PostScript 3™ Version 3010 Product Supplement),
available from the Adobe Developers Association, describes the formal
extensions to the PostScript language that have occurred since the publication
of the PostScript Language Reference Manual, Second Edition. This
supplement also includes all LanguageLevel 3 extensions available in version
3010.

PostScript Language Reference Manual, Second Edition (Reading, MA:
Addison-Wesley, 1991) is the developer’s reference manual for the PostScript
language. It describes the syntax and semantics of the language, the imaging
model, and the effects of the graphical operators.

Statement of Liability

THIS PUBLICATION AND THE INFORMATION HEREIN IS FURNISHED
AS IS, IS SUBJECT TO CHANGE WITHOUT NOTICE, AND SHOULD NOT
BE CONSTRUED AS A COMMITMENT BY ADOBE SYSTEMS
INCORPORATED. ADOBE SYSTEMS INCORPORATED ASSUMES NO
RESPONSIBILITY OR LIABILITY FOR ANY ERRORS OR
INACCURACIES, MAKES NO WARRANTIES OF ANY KIND (EXPRESS,
IMPLIED, OR STATUTORY) WITH RESPECT TO THIS PUBLICATION,
AND EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES OF
MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSES, AND
NONINFRINGMENT OF THIRD-PARTY RIGHTS.
xii Preface 10 October 1997

Smooth Shading
A
dobe S

ystem
s Incorporated
1 Smooth Shading

1.1 Overview of Smooth Shading

Smooth shading can be used to accurately describe both monochrome and
color gradient fills (blends) for onscreen display or for printing to a
PostScript printer. A gradient fill is simply a smooth transition from one color
to another color. One of the intentions of smooth shading is to separate the
geometry of the area to be filled (the object) from the geometry of the color
gradient fill or transition (the description of the colors to be used to create the
gradient fill).

Smooth shading has many uses, including:

• painting oval, circular, or polygonal radial gradient fills.

• painting an object or a region with a gradient fill color.

• rendering gradient fills between objects using Bézier patch meshes.

• rendering three-dimensional objects with triangle meshes.

In previous levels of the PostScript language, a gradient fill was
approximated by a large series of concentric, filled objects, known as
contours. The geometries and solid-color fill values were interpolated
between first and last objects. This method tended to be very inefficient and
device-dependent, but, with enough contours, it could produce the illusion of
a continuous gradient fill. The major task for developers was to determine the
best number of contours for a particular gradient fill. If the number of
contours chosen was too high, the resulting gradient fill would waste
resources and device memory. If the number of contours was too low, the
resulting output would contain banding; in other words, the gradient fill
would become discontinuous in one or more places of the region to be
shaded.
13

A

do
be

 S
ys

te
m

s
In

co
rp

or
at

ed

In LanguageLevel 3, smooth shading of objects and regions is defined in
terms of a complex paint (gradient fill) that provides smooth transitions
between colors across the painted area(s). The two language extensions for
creating smooth shading are the shfill operator and the Type 2 Pattern
dictionary.

When the object to be painted is a relatively simple shape, or when the
geometry of the object to be painted with a gradient fill is the same as the
geometry of the gradient fill itself, the shfill operator can be used. shfill
accepts a single operand, which is a Shading dictionary. The Shading
dictionary contains details of the type of shading, the geometry of the area or
object to be shaded, and the geometry of the color gradient fill. In addition,
the Shading dictionary can contain a Function dictionary – which is
required for some types of shading and optional for others – that defines how
the color or colors varies across the area or object to be shaded.

When the object to be painted is complex – such as a complex character path
or an imagemask – a type 2 Pattern dictionary can be used. The Pattern
dictionary has a Shading dictionary as one of its elements to define the
shading type used. Additionally, this Shading dictionary may also have an
associated Function dictionary. The type 2 Pattern dictionary can be used as
an argument to the setpattern or setcolor operators; the resulting color can
then be used with the fill, stroke, show, or imagemask operators to paint a
path or mask, using a smooth transition between colors across the area or
object to be painted. The number of steps in this transition no longer has to be
specified as it was in previous levels of the PostScript language.
14 Smooth Shading 10 October 1997

A

dobe S
ystem

s Incorporated

There are seven new shading methods that can be described with Shading
dictionaries. They are summarized as follows:

• Function-based shading: the color of every point in the domain is defined
by a mathematical or sampled function. This mathematical function does
not necessarily have to be smooth or continuous. Function-based shading
is defined as ShadingType 1.

• Axial shading: the color at any one point is created by a gradient fill along
a line (an axis) between two endpoints. The gradient fill can be extended
beyond the endpoints by continuing the colors at the two endpoints. Axial
shading is defined as ShadingType 2.

• Radial shading: the color at any one point is created by a gradient fill
between two circles. This shading method is often used to emulate three-
dimensional spheres, cylinders, and cones. Radial shading is defined as
ShadingType 3.

• Free-form triangle meshes using Gouraud shading: the color at any one
point is created by an interpolation of the colors of the three vertices of a
triangle in which it is contained using the Gouraued shading method. The
triangles form a mesh that defines the area to be shaded. Free-form
triangle mesh shading is defined as ShadingType 4.

• Lattice-form triangle meshes using Gouraud shading: this is similar to the
Free-form method. The main difference is that the mesh is generated in a
pseudo-rectangular lattice structure. Lattice-form triangle mesh shading is
defined as ShadingType 5.

• Coons patch meshes: the color at any one point is created by a bilinear
interpolation of the colors defining the four corner points of the patch.
Each patch is defined by four Bézier curves and contains twelve control
points. Coons patch mesh shading is defined as ShadingType 6.

• Tensor Product patch meshes: this is similar to the Coons Patch Mesh
method. The main difference is that the patches are defined by 16 control
points instead of 12. Tensor Product patch mesh shading is defined as
ShadingType 7.
1 Smooth Shading 15

A

do
be

 S
ys

te
m

s
In

co
rp

or
at

ed

1.2 Benefits of Using Smooth Shading

Smooth shading, and its associated LanguageLevel 3 extensions, has several
benefits over older methods of providing gradient fills:

• Smooth shading specifies gradient fills in a device-independent manner.
This is achieved by using mathematical functions to assign color values to
each point or pixel in the region to be shaded.

• Smooth shading produces smoother gradient fills and higher quality output
on high-resolution screen and printing devices.

• The same PostScript code can be used to take full advantage of the
printing qualities and characteristics of every PostScript printer.

• Use of smooth shading code can significantly reduce the size of the
resulting PostScript language file.

• Smooth shading code will process more quickly on LanguageLevel 3
devices than on older devices that use older techniques for shading.

• Smooth shading can be used to greatly improve gradient fills on
monochrome screen and printing devices.

• Function-based, triangle, and Bézier patch shading (ShadingType 1, 4, 5,
6, and 7) can create gradients that interpolate along two axes. This is not
possible with contours.

• The use of functions adds a concise representation of complicated
gradients.

• Pattern dictionaries can effectively set a gradient colorspace to be used for
filling paths.

• The setsmoothness and currentsmoothness operators give the
developer and application the power to control the trade-off between
performance and quality of smooth shading.
16 Smooth Shading 10 October 1997

A

dobe S
ystem

s Incorporated

2 Implementing Smooth Shading

Section 2.1 describes the shfill operator and how it is used for certain types of
shading (tiling patterns). Sections 2.2 and 2.3 cover the definition of Pattern
dictionaries and how they are used to create smooth shading. Sections 2.4
through 2.12 cover the definition and use of Shading dictionaries, individual
shading types, and their associated mathematical elements. Sections 2.13
through 2.17 cover the Function dictionaries that can be used by Shading
dictionaries to define color transitions for smooth shading. Figure 1 shows
the relationship of these three dictionary types. Finally, Section 2.18
describes the currentsmoothness and setsmoothness operators and how
they might work with the various shading methods.

Figure 1 Hierarchy of dictionaries used for smooth shading

Complete descriptions of all the PostScript language extensions for smooth
shading, plus other required language features, can be found in the
Supplement: PostScript Language Reference Manual.

2.1 Shfill Operator

The shfill operator can be used to produce a smoothly shaded or varying
gradient fill when the gradient fills themselves are geometric objects (where
the geometry of the object to painted with a gradient fill is similar to or the
same as the geometry of the gradient fill itself). It can also be used for tiling
patterns containing a gradient fill. In other words, shfill can be used for a
repeated pattern of shading. In this particular case, the shfill operator must be
called from within the PaintProc procedure of a Type 1 Pattern dictionary.

The shfill operator takes as input one Shading dictionary, with an optional
Function subdictionary (See Figure 2). shfill then paints the shape and color
transitions described by the Shading dictionary. This paint process is limited
by, or clipped to, the current clipping region. The current path is ignored by
shfill, and no other changes are made to the current graphics state.

Type 2 Pattern dictionary

Shading dictionary

Function dictionary

shfill operator

Shading dictionary

Function dictionary
2 Implementing Smooth Shading 17

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
All of the geometric coordinates defined in the Shading dictionary are
interpreted relative to the current user space. All color values are interpreted
relative to the ColorSpace key of the Shading dictionary. The Background
key of the Shading dictionary is ignored.

Figure 2 Inputs to the shfill operator

Note The shfill operator should only be used for bounded and/or geometrically-
defined shading; otherwise, the paint could occur across the entire current
clipping region.

Note If the currentfile operator is used as a source for reading large blocks of data
from a PostScript stream, the data should immediately follow the call to the
shfill operator. This approach is the same as for the image operator.

Note The shfill operator can return the following errors: rangecheck and
undefinedresult.

shfill

Shading dictionary

Function dictionary
(optional)
18 Smooth Shading 10 October 1997

A
dobe S

ystem
s Incorporated
Example 1 Using shfill for smooth shading

%AXSHO1.PS
%This is a simple illustration of ShadingType 2 using a
%FunctionType 2.The shading dictionary is called by shfill
%Set up color space and other graphics state variables
/inch {72 mul} def
...
%Create an object to shade
...
gsave % save graphics state

clip % clip to constructed path
newpath % clear out current path
% Define the shading and function dictionaries
<< /ShadingType 2

/ColorSpace /DeviceGray
/Coords [0 0 8.5 inch 11 inch]
%Define the Function
/Function << /FunctionType 2

% Value is C0 + t ** N * (C1 - C0)
/Domain [0 1]
/C0 0 % result for input 0 = black
/C1 1 % result for input 1 = white
/N 1 % Exponent = linear

>>
>>
shfill

grestore
showpage
2 Implementing Smooth Shading 19

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
Example 2 Using shfill in a PaintProc procedure

%PATTYP1.PS
%This example illustrates the use of smooth shading in
%conjunction with a Type 1 pattern to obtain a pattern
%fill whose tiles are smooth shaded areas.
%Define graphics state and other variables
/inch {72 mul} def% define inch procedure
...
%Define a shading function dictionary
/FunctionDict 10 dict def
FunctionDict begin
 /FunctionType 2 def
 /Domain [0 1] def
 /C0 [0 1 1] def
 /C1 [1 0 1] def
 /N 1 def
end
%Define the shading dictionary
/ShadingDict 10 dict def
ShadingDict begin
 /ShadingType 2 def
 /ColorSpace /DeviceRGB def
 /Coords [0 0 100 100] def
 /Function FunctionDict def
end
%Now define the pattern dictionary
/PatternDict 10 dict def
PatternDict begin
 /PatternType 1 def
 /PaintType 1 def
 /TilingType 1 def
 /BBox [0 0 100 100] def
 /XStep 100 def
 /YStep 100 def
 /PaintProc {
 begin
 ShadingDict shfill
 end
} def
end
PatternDict [0.25 5 sin 0 0.25 0 0] makepattern /P1 exch def
...
/Times-Bold findfont 480 scalefont setfont
0.5 inch 6 inch moveto (P) P1 setpattern show
...
showpage

Note Complete PostScript language files containing these examples accompany
this document.
20 Smooth Shading 10 October 1997

A
dobe S

ystem
s Incorporated
2.2 Pattern Dictionaries

LanguageLevel 3 includes a new Pattern dictionary with a PatternType 2.
This dictionary can then be used with the makepattern and setpattern
operators to define the complex paints needed for creating gradient fills (See
Figure 3).

Figure 3 Inputs to the makepattern and setpattern operators

Table 1 shows the keys that define a Pattern dictionary. The keys are
described in more detail, below.

The PatternType key is required and must have the value of 2. The Shading
dictionary contains the information describing the desired shading method. It
is described in more detail in Sections 2.4 through 2.12. The XUID key is an
optional array that contains an extended unique ID that identifies the pattern.
The Implementation key is defined by the makepattern operator. The type
and value of this key are implementation-dependent.

Note There is a new instance of the implicit resource category called PatternType.
This new instance is 2. Currently, the only supported instances of this
category type are 1 and 2.

The keys of the Pattern dictionary are described in more detail in Section
4.4.1 of the Supplement: PostScript Language Reference Manual.

2.3 Painting With a Pattern Dictionary

For painting operations using the new PatternType 2 Pattern dictionary, the
Pattern dictionary acts as the current color in the current graphics state. Once
the pattern is created and set with the makepattern and setpattern operators,
or with the setcolorspace and setcolor operators, the fill, stroke, show, and

Table 1 Keys for the PatternType 2 Pattern dictionary

Key Type

PatternType integer required

Shading dictionary required

XUID array optional

Implementation user-defined

makepattern

Pattern dictionary

setpattern

Shading dictionary

Function dictionary
(optional)
2 Implementing Smooth Shading 21

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
imagemask operators can then be used with this pattern as the current color
to paint a path or mask with the gradient fill. The pattern coordinate space is
obtained in the same way as with PatternType 1 patterns. However, instead
of executing a PatternType 1 PaintProc procedure, the shape and color
transitions described by the Shading dictionary are interpreted relative to this
coordinate space to create a logical paint with which graphical objects can be
rendered.

Example 3 Using a PatternType 2 Pattern dictionary for shading

%PATTYP2.PS
%This example demonstrates the use of a Type 2 Pattern
%dictionary for smooth shading.
%Define various graphics state variables
/inch {72 mul} def
...
%Define some object to shade
...
%Define the Pattern dictionary, Shading dictionary, and
%Function dictionary
gsave
<<

/PatternType 2
 /Shading <<
 /ShadingType 2
 /ColorSpace /DeviceRGB
 /Background [0 1 1]% A Cyan background
 /Coords [0 0 8.5 inch 11 inch]
 /Domain [0 1]
 /Function <<
 /FunctionType 2
 /Domain [0 1]
 /C0 [1 0 1] % Magenta
 /C1 [0 1 1] % Cyan
 /N 1
 >>
 >>
>>
makepattern
setpattern
%Now perform shade of object by calling a standard
%PostScript rendering operator such as fill or image
...
grestore
showpage

Note Complete PostScript language files containing these examples accompany
this document.
22 Smooth Shading 10 October 1997

A
dobe S

ystem
s Incorporated
If the BBox key is present in the current Shading dictionary, it is used to clip
the logical painting region. This region may also be affected by the geometry
of the shading. All color values are interpreted relative to the ColorSpace
key in the Shading dictionary.

If a Background color is defined in the Shading dictionary, that color is used
first to fill the background of the object or region being painted. This is
equivalent to executing a fill operation or other painting operation first with
the background color and then again with the gradient fill pattern.

Note The Background key is provided because the two-step sequence of
operations described above would be verbose, especially for text or the
imagemask operator. The new approach is most beneficial for gradient fill
patterns that do not cover the entire area of the object being rendered.

Some smooth shading methods allow for use of arbitrarily large streams of
data through the DataSource key. Since gradient fills defined by
PatternType 2 pattern resources may be used multiple times, this data must
be provided in a reusable form. Data stored in a string is reusable, but the
strings are limited in size to 64 kilobytes (Kb). Data stored in files pointed to
by currentfile or simply in files stored on a hard disk are not reusable. In
order to use data stored as internal or external files, it must be converted into
a reusable stream by means of the ReusableStreamDecode filter (see
Section 3.3.7 of the Supplement: PostScript Language Reference Manual).

Note A non-reusable stream of data from a Shading dictionary may only be used
with the shfill operator. In other words, if a non-reusable stream of data is
needed with the current Shading dictionary, then the shfill operator must be
used instead of a Pattern dictionary to render the object. The only exception
to this is for shading with sampled functions (ShadingType 0). In this case,
non-reusable streams cannot be used, even if shfill is used.

Note PatternType 2 gradient fills do not tile (create a repeated pattern). To create
a tiling or repeating pattern containing a gradient fill, use the shfill operator
in the PaintProc procedure of a PatternType 1 pattern resource. See Section
2.1 for more information on the shfill operator.

2.4 Shading Dictionaries

A Shading dictionary is used to describe the various smooth shading
methods supported in LanguageLevel 3. There are currently seven supported
types of smooth shading, each associated with a specific value of the key
ShadingType. All Shading dictionaries contain the following keys:
ShadingType, ColorSpace, Background, BBox, and AntiAlias. From this
list, only the ShadingType and ColorSpace keys are required in the
Shading dictionary definition. Some types of Shading dictionaries also
include a Function dictionary key (see Sections 2.13 through 2.17). In such
2 Implementing Smooth Shading 23

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
cases, the Shading dictionary usually defines the geometry of the shading,
while the Function dictionary defines the color transitions across that
geometry.

In addition to these keys, a Shading dictionary must have entries specific to
each shading type (the value of the ShadingType key). Table 2 through Table
11 list the keys specific to each of the seven shading types. For complete
descriptions of each key defined for each Shading dictionary, see Section 4.4
of the Supplement: PostScript Language Reference Manual.

A Shading dictionary can be defined within a Pattern dictionary (see
Sections 2.2 and 2.3) or used as the parameter to the shfill operator (see
Section 2.1).

Note There is a new implicit resource category called ShadingType. Currently,
the only supported instances of this category type are 0 through 7,
corresponding to the Shading types discussed in Sections 2.6 through 2.12.

2.5 ColorSpace Key for Shading Dictionaries

The ColorSpace key defines not only the color space in which color values
are specified in the shading, but also the color space in which the gradient fill
calculations are performed. The gradient fills between colors defined by most
shadings are implemented using a variety of interpolation algorithms, and
these algorithms are sensitive to the characteristics of the color space. Linear
interpolation, for example, may have observably different results if specified
in CMYK color space as opposed to CIE L*a*b* color space, even if the
starting and ending colors are perceptually identical. The difference arises
because the two color spaces are not linear relative to one another. Smooth
shaded objects, paths, or masks are rendered using the following rules:

• If the value of the ColorSpace key is device-dependent and different from
the process color space of the device, then the resulting color values will
be converted to device colors using standard conversion formulae. To
maximize performance, these conversions may take place at any time.
Thus, any shadings defined with device-dependent color spaces may have
color gradient fills that are somewhat device-dependent. This does not
apply to any of the axial and radial shadings, since these perform gradient
fill calculations on a single variable and then convert to device colors after
the interpolation.

• If the value of the ColorSpace key is device-independent, then all
gradient fill calculations will occur in the device-independent color space.
Conversion to device colors will occur only after all interpolation
calculations are performed. Thus, the color gradient fills will be device-
independent for the colors generated at each point.
24 Smooth Shading 10 October 1997

A
dobe S

ystem
s Incorporated
• If the value of the ColorSpace key is Separation or DeviceN (See
Sections 3.1, 6.4, 4.2 of the Supplement: PostScript Language Reference
Manual) and the specified colorant(s) is/are not defined by
ProcessColorModel or SeparationColorNames so that the
alternativeSpace key must be used, then the gradient fill calculations will
be performed in the special color space prior to conversion to the
alternative color space. Thus, non-linear tintTransform functions will be
accommodated for the best possible representation of the shading method.
If the specified colorant(s) is/are supported, then no color conversion
calculations are needed.

• If the value of the ColorSpace key is Indexed (See Section 4.2 of the
Supplement: PostScript Language Reference Manual), then all color
values specified in the shading will be immediately converted to the base
color space. Depending on whether the base color space is device-
dependent or device-independent, gradient fill calculations will be
performed as stated above. Interpolation never occurs in the Indexed color
space, which is quantized (discrete steps as opposed to continuous color)
and inappropriate for calculations that assume a continuous range of
colors. Also, as described for the available ShadingType entries, the
Indexed color space may not be allowed in some shadings (see Sections
2.6 through 2.12). For example, the Indexed color space is not allowed for
axial or radial shadings that perform interpolation calculations on a single
variable and then convert to parametric colors, which are assumed to
represent a continuous range of colors. Similarly, the Indexed color space
is not allowed for function-based shadings, which interpolate between
sampled color values.
2 Implementing Smooth Shading 25

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
2.6 ShadingType 1: Function-Based Shading

ShadingType 1 is intended for sophisticated gradient fills in cases where the
other types of shading – such as axial, radial, triangle mesh, and Coons patch
– are not sufficient. ShadingType 1 specifies function-based shading. In
other shading types, a function can be used to describe the color transitions
across the geometry of the shading. In this case, the function describes the
shading itself.

Using the ShadingType 1 shading method, the color of every point in the
domain is defined by a two-dimensional object that uses a mathematical or
sampled function to map each point in the domain to a specific color value.
The mathematical function does not necessarily have to be smooth or
continuous.

Table 2 shows the keys that define a Shading dictionary for ShadingType 1.
The keys are described in more detail below.

The ShadingType key is required for every Shading dictionary, regardless
of its type. It specifies the shading type or method to be used. In this case, the
value must be 1.

The ColorSpace key is also required for every Shading dictionary,
regardless of its type. The value may be any device-dependent (including
DeviceN), device-independent, or special color space, except Pattern. The
Indexed color space requires some special handling, as discussed in Section
2.5). All color values for this shading are interpreted relative to the color
space defined by this key.

The Background key is optional for every Shading dictionary. It is an array
of color components appropriate to the ColorSpace key. It specifies a single
color value.

Table 2 Keys for ShadingType 1 Shading dictionaries

Key Type

ShadingType integer required

ColorSpace name or array required

Background array optional

BBox array optional

AntiAlias boolean optional

Domain array optional

Matrix array optional

Function dictionary or array required
26 Smooth Shading 10 October 1997

A
dobe S

ystem
s Incorporated
The BBox key is optional for every Shading dictionary. It is an array of four
numbers interpreted as the lower-left and upper-right coordinates in the
current coordinate space at the time the shading is imaged. If this key is
present, then the shading is clipped to the intersection of this bounding box
and the current clipping path. If the key is not present, then the shading is
clipped to the bounding box of the clipping region at the time the shading is
imaged.

The AntiAlias key is optional for every Shading dictionary. It is a Boolean
value with a default value of false. If true, the shading function, defined by
the key Function, is combined with a convolution function to average
shading values across device pixels. This produces a more device-
independent representation when the spatial frequency of the shading is more
than about half the device resolution. It also makes shadings more resistant to
variations in appearance due to changes in the current transformation matrix
(CTM).

Note The implementation of the AntiAlias key is device specific. Some devices may
have a Null implementation, in which case, the key is ignored.

Domain is an optional array of four numbers specifying the rectangular
domain of arguments with which the color function(s) are called. The default
domain value is [0 1 0 1].

Matrix is an optional transformation matrix that specifies the mapping from
the Domain value (see above) into the coordinate space in which the shading
is being imaged. The default matrix is the identity matrix.

The Function key is optional for ShadingType 1. It specifies a single 2-in n-
out Function dictionary or an array of n 2-in 1-out Function dictionaries,
where n is the number of color components in the ColorSpace entry.

Note The Domain value defined in the Function dictionary must be a superset of
the Domain value of its Shading dictionary. If the values returned by the
function are out of range for the given color component, then the values will
be adjusted to the nearest allow value (clipped).

Any points that are within the region defined by the BBox value but are
outside the Domain value will be left unpainted. However, in the case of
gradient fill patterns with a Background color specified, such points will be
painted with the background color.

If the function is undefined at any point within its declared Domain value, an
undefinedresult error may occur, even if such points are outside the region
defined by the BBox value.
2 Implementing Smooth Shading 27

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
Example 4 Function-based shading (ShadingType 1)

%FUNSH01.PS
%This example demonstrates smooth shading using a sampled
%function and shfill
%Set up graphics state and other variables
/inch {72 mul} def
...
%Define the shading dictionary
gsave
<<
 /Domain [0 6.5 inch 0 9 inch]
 /Matrix [1 0 0 1 1 inch 1 inch]
 /ShadingType 1
 /ColorSpace /DeviceRGB
 /Function <<
 /FunctionType 0
 /Order 1
 /Domain [0 1 0 1]
 /Range [0 1 0 1 0 1]
 /Decode [0 1 0 1 0 1]
 /DataSource <
 FF 00 00 80 80 00 44 44 00 00 00 C0
 80 C0 00 FF FF FF FF FF FF FF 00 00
 FF FF FF FF FF FF FF FF FF FF 00 FF
 80 00 80 00 FF 00 FF FF 00 C0 C0 00
 >
 /BitsPerSample 8
 /Size [4 4]
 >>
>>
shfill
grestore
showpage

Note Complete PostScript language files containing these examples accompany
this document.

For a complete list and description of the keys in the ShadingType 1
Shading dictionary, see Table 4.8 in the Supplement: PostScript Language
Reference Manual.
28 Smooth Shading 10 October 1997

A
dobe S

ystem
s Incorporated
2.7 ShadingType 2: Axial Shading

Axial shading is so called because the geometry of the gradient fill is defined
along a line or axis defined by a pair of endpoints. It is called axial rather than
linear because linear is just one form of interpolation that can be used to the
define the gradient fill of the shading. Thus, the transition from one color to
another could vary linearly or non-linearly along the line or axis.

ShadingType 2 defines a color gradient fill along a line (axis) between two
endpoints. This gradient fill can optionally be extended beyond the endpoints
by continuing the boundary (endpoint) colors. This gradient fill is determined
by a one-dimensional interpolation specified by the Function key.

Table 3 shows the keys that define a Shading dictionary for ShadingType 2.
The keys are described in more detail below.

The ShadingType, ColorSpace, Background, BBox, and AntiAlias keys
are defined as for ShadingType 1.

ShadingType must be 2.

The Coords key is a required array of four numbers that specify the start and
end coordinate pairs [x0, y0, x1, y1].

The Domain key is an optional array of two numbers. A parametric variable t
is considered to vary linearly between these two values as the gradient fill
varies between the start and endpoints, respectively (from Coords). The
variable t becomes the argument to the color function(s). The default value of
Domain is [0 1].

Table 3 Keys for ShadingType 2 Shading dictionaries

Key Type

ShadingType integer required

ColorSpace name or array required

Background array optional

BBox array optional

AntiAlias boolean optional

Domain array optional

Extend array optional

Function dictionary or array required

Coords array required
2 Implementing Smooth Shading 29

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
Extend is an optional array of two Boolean values that specify whether or not
to extend the start and end colors past the start and endpoints, respectively.
The default value for each element of the array is false.

Function is an optional key. It can be either a single 1-in n-out function
dictionary or an array of n 1-in 1-out function dictionaries, where n is the
number of components in the ColorSpace entry. The Function(s) is/are
called with the parameter t defined in Domain (see above).

Note The Domain value defined in the Function dictionary must be a superset of
the Domain value of its Shading dictionary. If the values returned by the
function are out of range for the given color component, then the values will
be adjusted to the nearest allow value (clipped).

ShadingType 2 defines a field of color that varies along the line between the
start and end coordinates and extends infinitely away from the line. If the
Extend Boolean values are true, the field may also extend infinitely far along
the line, past either or both endpoints, using the constant color of that
endpoint.

The gradient fill is accomplished by linearly mapping the range between the
endpoints to the value of Domain defined in the Shading dictionary, as
follows. Every point (x,y) is mapped to a coordinate space where (0,0)
corresponds to (x0,y0) and (1,0) corresponds to (x1,y1). Since all points on a
line perpendicular to the line from (0,0) to (1,0) in that space will have the
same color, only the new value of x, called x’, needs to be computed in that
space:

x’ = ((x1 - x0)(x - x0) + (y1 - y0)(y - y0)) / ((x1 - x0)2 + (y1 -y0)2)

Once x’ is calculated, the value of the parametric value t can be determined.
This value is used as the input arguement to the Function key, and the
returned value(s) are used to paint the gradient fill.

Note This parametric gradient fill may not be used with the value of ColorSpace
set to Indexed.

The value of t is determined as follows:

• If x’ < 0 and the first value in the Extend array is true, the parameter t is
set to the value of t0. However, if the first value in the Extend array is
false, that point is not painted.

• If x’ > 1 and the second value in the Extend array is true, the parameter t
is set to the value of t1. However, if the first value in the Extend array is
false, that point is not painted.

• If 0 <= x’ <= 1, then t = t0 + (t1 - t0)x’.
30 Smooth Shading 10 October 1997

A
dobe S

ystem
s Incorporated
Example 5 Axial shading (ShadingType 2)

%AXSHO2.PS
%This is a simple illustration of Shading type 2.
%Define graphics state and other variables
/inch {72 mul} def
...
gsave
<<%define the shading dictionary
 /ShadingType 2
 /ColorSpace /DeviceRGB
 /Coords [3 inch 3 inch 5.5 inch 8 inch]
 /BBox [1 inch 1 inch 7.5 inch 10 inch]
 /Extend [true false]% Extend only one end
 /Function

<<
/FunctionType 2
/Domain [0 1]
/C0 [1 0 1] %magenta
/C1 [0 1 1] %cyan
/N 1

>>
>>
shfill
grestore
showpage

Note Complete PostScript language files containing these examples accompany
this document.

For a complete list and description of the keys in the ShadingType 2
Shading dictionary, see Table 4.9 in the Supplement: PostScript Language
Reference Manual.
2 Implementing Smooth Shading 31

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
2.8 ShadingType 3: Radial Shading

ShadingType 3 defines a color gradient fill between two circles or cylinders.
This method is most commonly used to produce the visual effect of a three-
dimensional sphere or cone. ShadingType 3 is accomplished by one-
dimensional interpolation along the radius of the circle, from the center of the
circle outward. The resulting path can be either circular or elliptical.

Table 4 shows the keys that define a Shading dictionary for ShadingType 3.
The keys are described in more detail below.

The ShadingType, ColorSpace, Background, BBox, and AntiAlias keys
are defined as for ShadingType 1.

ShadingType must be 3.

Coords is a required array of six numbers that specify the center coordinates
and radii of the start and end circles [x0, y0, r0, x1, y1, r1]. The radii r0 and r1
must be greater than or equal to zero. If one radius is zero, that circle is
treated as a point. If both radii are zero, nothing is rendered.

The Domain, Extend, and Function keys are defined exactly the same as
with ShadingType 2 (See Section 2.7).

Table 4 Keys for ShadingType 3 Shading dictionaries

Key Type

ShadingType integer required

ColorSpace name or array required

Background array optional

BBox array optional

AntiAlias boolean optional

Domain array optional

Extend array optional

Function dictionary or array required

Coords array required
32 Smooth Shading 10 October 1997

A
dobe S

ystem
s Incorporated
When using ShadingType 3, the following results can be observed:

• If the circle with the smaller radius is extended by the Extend Boolean
value (a value of true means to shade beyond the endpoint), the interior of
that circle will be painted (shaded) with the constant color of that circle.
That is, the color defined at the radius of the smaller circle will be used.

• If the circle with the larger radius is extended by the Extend Boolean
values, the exterior of that circle will be painted with the constant color of
that circle. The resulting paint (shading) is limited by the value of the
BBox key.

• If the start and end circles are not concentric and the larger radius is given
first (specified by Coords), then the resulting gradient fill will depict a
cone pointing out of the page (toward the viewer).

• If, under the same conditions, the smaller radius is given first (specified by
Coords), then the resulting gradient fill will depict a cone pointing into the
page (away from the viewer).

• If a spherical gradient fill is needed, then the larger circle will entirely
contain the smaller circle.

The gradient fill is accomplished by mapping the region between the start and
end circles to a linear parametric variable whose domain is the value of the
Domain key. The resulting parametric value is used as the input argument to
the Function key. The returned value(s) from Function is/are used to paint
the gradient fill.

The parametric variable s = (t - t0) / (t1 - t0) varies linearly between 0 and 1 as
t varies across the value of Domain. The parametric equations for the center
and radius of the gradient fill circle moving between the start circle and the
end circle as a function of s are as follows:

xc(s) = x0 + s * (x1 - x0)

yc(s) = y0 + s * (y1 - y0)

r(s) = r0 + s
* (r1 - r0)

Given a geometric coordinate position (x, y) in or along the gradient fill, the
corresponding value of s can be determined by solving the quadratic
constraint equation:

[x - xc(s)]2 + [y - yc(s)]2 = [r(s)]2
2 Implementing Smooth Shading 33

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
Given s, the value of t can be found, which is then passed to the Function
key. The value(s) returned by Function is/are used to determine the color at
the position (x, y). If both roots of the equation are in the domain [0 1], then
the larger value of s defines the color because it comes after the smaller value
and thus overlays it. For values of s outside the domain [0,1], the Extend
values determine how the shading will be painted. The following rules hold
true for pixel coordinates (x,y) satisfying the above equation.

• If the start (first) Extend value is false, then pixels corresponding to values
of s < 0 are left unpainted or are painted with the Background color, if
one is specified.

• If the end (last) Extend value is false, then pixels corresponding to values
of s > 1 are left unpainted or are painted with the Background color, if
one is specified.

• If the start Extend value is true and r[s] >= 0, then pixels corresponding
to the values of s < 0 are painted with the start color.

• If the end Extend value is true and r[s] >= 0, then pixels corresponding to
values of s > 1 are painted with the end color.

Note For cases where one circle is not completely contained within the other,
Extend values of true can cause painting to extend beyond the areas defined
by the two circles.

Note This parametric gradient (vignette) may not be used with the value of
ColorSpace set to Indexed color space.
34 Smooth Shading 10 October 1997

A
dobe S

ystem
s Incorporated
Example 6 Radial shading (ShadingType 3)

%RADSAMP.PS
%This example illustrates the use of ShadingType 3.
%Define the graphics state and other variables
/inch {72 mul} def
...
% Setup up the shading and function dictionaries
gsave
<<
 /ShadingType 3
 /Coords [3.25 inch 3.5 inch 3 inch 3.25 1.5 add inch 3.5
3.5 add inch 3.25 inch]
 /ColorSpace /DeviceRGB
 /Function <<
 /FunctionType 0
 /Order 1
 /BitsPerSample 16
 /Domain [0 1]
 /Decode [0.5 0 1 0.5 0 0.99]
 /Range [0 1 0 1 0 1]
 /Size [36]
 /DataSource <

0000 0000 0000
164F 164F 164F
2C74 2C74 2C74
...
2C74 2C74 2C74
164F 164F 164F
0000 0000 0000

 >
 >>
>>
shfill
grestore
showpage

Note Complete PostScript language files containing these examples accompany
this document.

For a complete list and description of the keys in the ShadingType 3
Shading dictionary, see Table 4.10 in the Supplement: PostScript Language
Reference Manual.
2 Implementing Smooth Shading 35

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
2.9 ShadingType 4: Free-Form Gouraud-Shaded Triangle Meshes

ShadingType 4 defines a common construct used by many three-dimensional
applications for imaging complex colored and shaded objects. Gouraud-
shaded triangle meshes construct paths composed entirely of triangles. The
color of each vertex of a triangle is specified, and Gouraud interpolation is
used to determine the color of the interior points. A primary use of these
meshes is to allow the specification of polygon vignettes as triangle meshes
with nonlinear interpolation functions.

Table 5 shows the keys that define a Shading dictionary for ShadingType 4.
The keys are described in more detail below.

Note The BitsPerCoordinate, BitsPerComponent, BitsPerFlag, and Decode
keys are required unless the value of DataSource is an array.

The ShadingType, ColorSpace, Background, BBox, and AntiAlias keys
are defined as for ShadingType 1.

ShadingType must be 4.

The BitsPerCoordinate key is required unless DataSource is an array. This
integer value specifies the number of bits used to represent each vertex
coordinate. The data is decoded based on the value of the Decode key.
Allowed values are 1, 2, 4, 8, 12, 16, 24, and 32.

Table 5 Keys for ShadingType 4 Shading dictionaries

Key Type

ShadingType integer required

ColorSpace name or array required

Background array optional

BBox array optional

AntiAlias boolean optional

DataSource various required

BitsPerCoordinate integer required (see note)

BitsPerComponent integer required (see note)

BitsPerFlag integer required (see note)

Decode array required (see note)

Function dictionary or array optional
36 Smooth Shading 10 October 1997

A
dobe S

ystem
s Incorporated
The BitsPerComponent key is required unless DataSource is an array. This
integer value specifies the number of bits used to represent each color
component. The data is decoded based on the value of the Decode key.
Allowed values are 1, 2, 4, 8, 12, and 16.

BitsPerFlag is an integer value that is required unless DataSource is an
array. It specifies the number of bits used to represent the edge flag for each
vertex. Allowed values are 2, 4, and 8; the allowed values for the edge flag are
0, 1, and 2.

The Decode key is required unless DataSource is an array. It specifies how
to decode coordinate and color component data into the ranges of values
appropriate for each. The ranges are specified as [xmin xmax ymin ymax c1,min,
c1,max,..., cn, min, cn,max].

Function is an optional key that specifies either a single 1-in n-out Function
dictionary or an array of n 1-in one-out Function dictionaries (n is the
number of components in the ColorSpace key). If Function is specified, the
vertex color data for the mesh must be specified by single values rather than
with color tuples. The Function dictionary will then be called with each
interpolated color value to determine the actual color of each vertex.

Note The Domain value defined in the function dictionary must be a superset of the
Domain value of its Shading dictionary. If DataSource is an array, in which
case Decode is not defined for this Shading dictionary, the Domain value
defined in the function dictionary must be a superset of the domain [0 1]. In
both cases, input values will be clipped to the subset of the function domain.
If the value(s) returned by the function(s) is/are out of range for a given color
component, the value(s) will be adjusted to the nearest allowed value
(clipped).

Note The Function key may not be used with unencoded vertex data; it may not be
used if the ColorSpace key is set to Indexed.

ShadingType 4, as well as ShadingType 5, 6, and 7, require a source of data
to define triangle or patch vertices and colors. There are two main ways to
specify the data source, each with varying degrees of complexity and
flexibility. This data source is defined with the DataSource key.

The easiest method for specifying the data source is with an array of numbers
that define the vertices and the color components of those vertices. Using an
array as a data source is conceptually very simple; the other methods of
providing the data allow for much greater flexibility in the way the data is
interpreted.

This other method requires the use of a string or a reusable stream as a data
supply. A string may be appropriate for use if the data is smaller than 64Kb in
length; otherwise, a reusable stream must be used. In either case, the data
2 Implementing Smooth Shading 37

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
must be encoded, and there are a variety of methods for specifying the
encoding (bits per value) of vertex data, color data, and flag data. Also, an
optional function may then be used to define the color transitions across the
geometry of the shading. When a function is used, the Encode and Decode
keys define how the encoded data values are mapped into the domain of the
function.

The DataSource key provides the sequence of vertex data needed to build
each triangle in the mesh.

The data for the ith vertex, vi, is of the form

fi xi yi ci ,1...ci,n

where x and y are vertex coordinates, c is a tuple of color values, f is the edge
flag for each vertex, and n is the number of color components. The edge flag
defines which triangle edges are shared. The number of color components for
each vertex is the same as the number of color components defined for the
current color space, as specified by the ColorSpace key. For example, if the
current color space is RGB, then there must be three color components for
each vertex. If the Shading dictionary contains the Function key, then only
one color component, c(i,1), is permitted in each sequence of vertex data.

Triangle meshes are built up as follows:

The first vertex, va, of the first triangle must have an edge flag value of 0 (that
is, fa = 0), which means that this is a new triangle (not attached to any
previous triangle). The edge flags of the next two vertices (vb and vc) are
ignored, but they are a required part of the data. These three vertices define
the first triangle, (va, vb, vc). Figure 4 shows this first triangle.

Figure 4 Defining a new triangle (f = 0)

Subsequent triangles are defined by a single new vertex and an edge that is
shared with the preceding triangle. This edge contains two vertices of the
preceding triangle (see Figure 5). Given triangle (va, vb, vc), where vertex a is

fa = 0

Previous
triangle

(Start a new triangle)

Va

Vb Vc
38 Smooth Shading 10 October 1997

A
dobe S

ystem
s Incorporated
older than vertex b and vertex b is older than vertex c (older means earlier in
the data source), a new triangle can be formed on side vbc or vac, creating a
new vertex vd (see Figure 5). If the edge flag fd = 1 (side vbc), the next vertex
forms the triangle vb, vc, vd. If the edge flag fd = 2 (side vac), the next vertex
forms the triangle va, vc, vd. The edge on side vab is assumed to be shared with
the preceding triangle, so is not an appropriate edge for continuing the
triangle mesh.

Whenever the edge flag f = 0, a new triangle is started. At least two more
vertices must be provided, but their edge flags are ignored. Whenever the
edge flag f = 1 or f = 2, a new vertex is added to complete the next triangle in
the mesh. An edge flag value f = 3 is not allowed.

The data stream for multiple triangles will look something like this:

f1x1y1c1,1...c1,n f2x2y2c2,1...c2,n f3x3y3c3,1...c3,n f4x4y4c4,1...c4,n f5x5y5c...

where n is the number of color components. The first three sets of data
(shown with the subscripts 1, 2, and 3) represent the first triangle, and each
additional set of data (subscript 4 and above) represents a new triangle.

Figure 5 How the value of the edge flag determines which edge is used for the next
triangle

f = 0

Va

Vb Vc

Vd

Ve Vf

Three new vertices

f = 1

Va

Vb Vc

Vd

One new
vertex

 f = 2

Va

Vb Vc

Vd

One new
vertex
2 Implementing Smooth Shading 39

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
It is possible to create complex shapes using triangle meshes by simply
varying the edge at which the next triangle is formed. Figure 6 shows two
very simple examples. To create Mesh 1, start with triangle 1 and create each
new triangle using the following edge flag values:

To create Mesh 2, start with triangle 1 and create each new triangle using the
following edge flags:

Table 6 Edge flag values for each triangle in Mesh 1

Triangle Edge Flag Value

1 fa = 0

2 fd = 1

3 fe = 2

4 ff = 1

5 fg = 2

6 fh = 1

7 fi = 1

8 fj = 1

9 fk = 2

10 fl = 1

11 fm = 2

Table 7 Edge flag values for each triangle in Mesh 2

Triangle Edge Flag Value

1 fa = 0

2 fd = 1

3 fe = 1

4 ff = 1

5 fg = 1

6 fh = 1
40 Smooth Shading 10 October 1997

A
dobe S

ystem
s Incorporated
Figure 6 Varying the value of the edge flag to create different shapes

This representation optimizes useful tiling meshes, although it can somewhat
complicate the data representation. The value of DataSource must provide a
whole number of triangles with appropriate vertex edge flags; otherwise, a
rangecheck error will occur. If the mesh contains only a few vertices (less
than about 30; however note that up to 64Kb of data is allowed for arrays),
the vertices may be represented by a simple array of numbers. In this case,
only the ShadingType, ColorSpace, and DataSource keys are required in
the Shading dictionary. If the mesh contains many vertices (more than about
30), the data should be encoded compactly and drawn from a stream. This
encoding is specified by the BitsPerCoordinate, BitsPerComponent,
BitsPerFlag, and Decode keys. Each vertex coordinate pair (x, y) is
expressed in 2 * BitsPerCoordinate bits, each vertex color tuple c is
expressed in n * BitsPerComponent bits, and each vertex edge flag f is
expressed in BitsPerFlag additional bits.

Each set of vertex data (edge flag, coordinate pair, and color tuple) takes an
integer number of bytes; therefore, if the total number of bits in the vertex
data is not divisible by eight, the vertex data is padded with ignored bits

2 4 6

7

8

9

10

11

531

Mesh 1

Va

Vb

Vc

Vd

Ve

Vf

Vg

Vh

ViVj

Vk

Vl

Vm

Vm = Vb

6

1

2

3

4

5

Mesh 2

Vb

Vc

Vd

VeVf

Vg

VhVh = Va

Va
2 Implementing Smooth Shading 41

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
inserted between the coordinate and color data. The coordinate and color data
is decoded based on the Decode array, similar to the decoding done with
image data.

If the Function key value is specified, then the vertex color data for the mesh
must be specified by single values t rather than color tuples c. All linear
interpolation within the triangle mesh will be done using the values of t, and
after interpolation, the value(s) returned from Function will be used to
determine the color of each point.

Note Using free-form Gouraud-shaded triangle meshes differs from using an
Indexed color space for the shading. If an Indexed color space is used, the
vertex coordinates are converted to the base color space first, and linear
interpolation occurs in that color space. Thus, there is no opportunity to
effect a nonlinear interpolation using an Indexed color space.
42 Smooth Shading 10 October 1997

A
dobe S

ystem
s Incorporated
Example 7 Free-form Gouraud-shaded triangle meshes (ShadingType 4)

%TRITYP4.PS
%This example demonstrates ShadingType 4
%Define graphics state and other variables
/inch {72 mul} def
...
/DeviceRGB setcolorspace
...
%Define the shading and function dictionaries
gsave
<<
 /ShadingType 4
 /ColorSpace [/DeviceRGB]
 /DataSource

[
 0 % edge flag = new triangle
 0 0 1 0 1 % magenta

 0 % dummy edge flag for second edge
 4 inch 4 inch 0 1 1 % cyan

 0 % dummy edge flag for third edge
 -4 inch 4 inch 0 1 1 % cyan
 2 % edge flag
 -4 inch -4 inch 0 1 1 % cyan
 2 % edge flag
 4 inch -4 inch 0 1 1 % cyan
 2 % edge flag
 4 inch 4 inch 0 1 1 % cyan

]
>>
shfill
grestore
showpage

Note Complete PostScript language files containing these examples accompany
this document.

For a complete list and description of the keys in the ShadingType 4
Shading dictionary, see Table 4.11 in the Supplement: PostScript Language
Reference Manual.
2 Implementing Smooth Shading 43

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
2.10 ShadingType 5: Lattice-Form Gouraud-Shaded Triangle Meshes

The ShadingType 5 shading method is almost identical to ShadingType 4,
with a few important exceptions. For ShadingType 4, vertices are specified
in a free-form geometry; for ShadingType 5, vertices must be in a pseudo-
rectangular lattice geometry. That is, the lattice need not be strictly
rectangular, but the set of vertices must be organized into rows. (The rows do
not need to be geometrically linear). In addition, the lattice-form triangle
mesh does not require the use of edge flags but instead defines the number of
vertices in each row of the lattice-form triangle mesh using the
VerticesPerRow key. Finally, the interpretation of the DataSource key is
different (see below).

Given m rows of n vertices, where the number of vertices is given in the value
of the VerticesPerRow key, triangles are constructed using the following
triplets of vertices:

(Vi ,j, Vi, j+1, Vi +1, j) for 0 <= i <= (m - 2), 0 <= j <= (n - 2)

(Vi,j +1, Vi+1,j, Vi+1,j+1) for 0 <= i <= (m - 2), 1 <= j <= (n - 1)

Conceptually, the simplest possible lattice triangle mesh contains four points
(vertices) in two rows of two vertices, as shown in Figure 7. Also shown in
this figure are examples of ideal and pseudorectangular lattices.

Figure 7 Simple lattice forms

i, j

i+1, j+1i+1, j

i, j+1

An ideal lattice A pseudorectangular lattice
44 Smooth Shading 10 October 1997

A
dobe S

ystem
s Incorporated
Table 8 shows the keys that define a Shading dictionary for ShadingType 5.
The keys are described in more detail, below.

Note The BitsPerCoordinate, BitsPerComponent, and Decode keys are required
unless the value of DataSource is an array.

The ShadingType, ColorSpace, Background, BBox, and AntiAlias keys
are defined as for ShadingType 1.

ShadingType must be 5.

The BitsPerCoordinate, BitsPerComponent, Decode, and Function keys
are all defined as for ShadingType 4 (See Section 2.9).

DataSource is a required key that provides a sequence of vertex coordinate
and color data that specifies the Lattice-form triangle mesh. It can be an array
of numbers, a string, or a stream (see the previous discussion for
ShadingType 4).

The data stream for multiple row of triangles will look something like this:

x1y1c1,1...c1,n x2y2c2,1...c2,n x3y3c3,1...c3,n x4y4c4,1...c4,n... xvyvcv,1...cv,n

x1y1c1,1...c1,n x2y2c2,1...c2,n x3y3c3,1...c3,n x4y4c4,1...c4,n... xvyvcv,1...cv,n

where n is the number of color components per vertex and v is the number of
vertices per row.

Table 8 Keys for ShadingType 5 Shading dictionaries

Key Type

ShadingType integer required

ColorSpace name or array required

Background array optional

BBox array optional

AntiAlias boolean optional

DataSource various required

BitsPerCoordinate integer required (see note)

BitsPerComponent integer required (see note)

Decode array required (see note)

VerticesPerRow integer required

Function dictionary or array optional
2 Implementing Smooth Shading 45

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
VerticesPerRow is a required integer value that defines the number of
vertices in each row of the mesh. Although the number of vertices per row
must be specified in VerticesPerRow, the number of rows does not need to
be specified in the Shading dictionary.

Example 8 Lattice-form Gouraud-shaded triangle meshes (ShadingType 5)

%LATTICE1.PS
%This example illustrates lattice triangle mesh shading
%using the simplest possible example with just two triangles.
%Define graphics state and other variables
/inch {72 mul} def
...
/DeviceRGB setcolorspace
...
%Define the shading dictionary
<<
 /ShadingType 5
 /ColorSpace /DeviceRGB
 /VerticesPerRow 2
 /DataSource [
 1 inch 1 inch 1 0 1 %Magenta at bottom left
 7 inch 1 inch 0 1 1 %Cyan at bottom right
 2 inch 10 inch 0 1 1 %Cyan at top left
 8 inch 10 inch 1 0 1 %Magenta at top right
]
>> shfill
...
showpage

Note Complete PostScript language files containing these examples accompany
this document.

For a complete list and description of the keys in the ShadingType 5
Shading dictionary, see Table 4.12 in the Supplement: PostScript Language
Reference Manual.
46 Smooth Shading 10 October 1997

A
dobe S

ystem
s Incorporated
2.11 ShadingType 6: Coons patch meshes

The ShadingType 6 shading method is used to construct one or more color
patches, each bounded by four Bézier curves, that comprise what is known as
a Coons patch. A primary use of this patch shading method is to allow the
specification of conical vignettes and other complex gradient fills as patch
meshes with nonlinear interpolation functions. A Coons patch is defined by
12 control points: four vertices plus eight Bézier control points, two for each
side of the patch. The color at any one point in the patch is determined by
interpolating the colors of the corner points.

A Coons patch generally has two independent aspects, a color specification
and a coordinate mapping. These two aspects are defined as follows:

• Colors are specified for each of the corners of the unit square, and bilinear
interpolation is used to fill in colors over the entire unit square.

• Coordinates are mapped from the unit square onto a four-sided patch
whose sides are not necessarily linear. The mapping is continuous; the
corners of the unit square map to corners of the patch, and the sides of the
unit square map to sides of the patch (see Figure 8).

Figure 8 Coordinate mapping from a unit square to a four-sided patch

Thus, ShadingType 6 shading results from coloring the unit square and then
mapping it.

A bicubic Coons patch maps the unit square to a region that is bounded by
four Bézier curves, c1, c2, d1, and d2.

d1

c1

d2

c2

v

u

2 Implementing Smooth Shading 47

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
The mathematics that describe this mapping are outlined below (refer to
Figure 8 above):

Two surfaces can be described that are linear interpolations over a pair of
boundary curves. Along the u axis, the surface Sc is described with

Sc(u, v) = (1 - v) * c1(u) + (v) * c2(u)

Along the v axis, the surface Sd is described with

Sd(u,v) = (1 - u) * d1(v) + (u) * d2(v)

The four corners of the Coons patch are described with

c1(0) = d1(0), c1(1) = d2(0), c2(0) = d1(1), and c2(1) = d2(1).

A third surface is the bilinear interpolation of the four corners

Sb(u,v) = (1 - v) * [(1 - u) * c1(0) + (u) * c1(1)]
+ (v) * [(1 - u) * c2(0) + (u) * c2(1)]

The coordinate-mapping for the shading is defined as the surface

S = Sc + Sd - Sb

This defines the geometry of each Coons patch. A Coons patch mesh is
constructed from a sequence of one or more such colored or shaded patches.

It is sometimes possible for a patch to appear to fold over on itself (see Figure
9). For example, a boundary curve can be self-intersecting. In this case, a fold
over would occurs as follows:

Consider the above description of a mapping from u,v parameter space to the
patch in device space. As the value of u or v increases in parameter space, the
location of the pixels in device space may change direction so that pixels are
mapped onto previously mapped pixels. If more than one parameter space
location (u,v) is mapped to the same location in device space, the value of
(u,v) selected will be the one with the largest value of v, and if multiple (u,v)
values have the same v, the one with the largest value of u will be chosen.
48 Smooth Shading 10 October 1997

A
dobe S

ystem
s Incorporated
Figure 9 Patch appearance, painted area, and boundary

Note A patch is a control surface rather than a painting geometry. The outline of a
projected square may not be the same as the boundary of a patch.

If a mesh contains several patches and if some portions of one patch overlap
portions of another patch, then later patches will paint over earlier patches
(earlier and later refer to the order of appearance of the patches in the
DataSource entry, which is described below).

Table 9 shows the keys that define a Shading dictionary for ShadingType 6.

Note The BitsPerCoordinate, BitsPerComponent, BitsPerFlag, and Decode
keys are required unless the value of DataSource is an array.

Table 9 Keys for ShadingType 6 Shading dictionaries

Key Type

ShadingType integer required

ColorSpace name or array required

Background array optional

BBox array optional

AntiAlias boolean optional

DataSource various required

BitsPerCoordinate integer required (see note)

BitsPerComponent integer required (see note)

BitsPerFlag integer required (see note)

Decode array required (see note)

Function dictionary or array optional

Appearance Painted area Patch boundary
2 Implementing Smooth Shading 49

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
The ShadingType, ColorSpace, Background, BBox, and AntiAlias keys
are defined as for ShadingType 1.

ShadingType must be 6.

The BitsPerComponent, Decode, and Function keys are all defined as for
ShadingType 4.

BitsPerCoordinate is an integer value that is required unless DataSource is
an array. It specifies the number of bits used to represent each geometric
coordinate. The data is decoded based on the value of Decode. The allowed
values are 1, 2, 4, 8, 12, 16, 24, and 32.

BitsPerFlag is an integer value that is required unless DataSource is an
array. It specifies the number of bits used to represent the edge flag for each
patch. The allowed values are 2, 4, and 8, but only the least significant two
bits in each flag value are used; the allowed values for the edge flag are 0, 1,
2, and 3.

The DataSource key provides a sequence of geometric coordinate and color
component values (patch vertex/mesh data). It can be in the form of an array
of numbers, a string, or a stream (see the earlier discussion for ShadingType
4). If the total number of bits used to represent the patch data is not divisible
by eight, the patch data is padded with ignored bits inserted between the color
data and the start of the next set of patch vertex data.

This data is interpreted similarly to, and has similar constraints as, the
ShadingType 4 and 5 triangle meshes, except that all of the coordinate pairs
for each patch are provided first, followed by its color tuples (with the
triangle meshes, the color data is supplied with each vertex). These color
values are specified for the corners of the patch in the same order as the
control points corresponding to the corners. Thus, c1 is the color at (x1, y1), c2
is the color at (x4, y4), c3 is the color at (x7, y7), and c4 is the color at (x10, y10),
as shown in Figure 10.

Figure 10 Color values and edge flags in Coons patch meshes

This side already
attached to previous
patch.

Use this sidewhen f = 1

Use this side
when f = 2

Use this side when f = 3

Start a new patch
if f = 0

12

2 9

11

10

8

6

5
3

4

1

7

c1

c2

c3

c4
50 Smooth Shading 10 October 1997

A
dobe S

ystem
s Incorporated
The ith patch in the data stream is represented by

fi x1y1 x2y2...x12y12 c1 c2 c3 c4

where fi is the edge flag for the patch, all of the xy values are the control point
coordinates, and the c values are the colors at the four corners of the patch.

The above figure also shows how the edge flag values (f = 0, f = 1, f = 2, f =
3) correspond to the coordinates that describe the sides of the patch. For each
edge flag value, one edge from the previous patch is used as the first edge for
the next patch., with the coordinates being traversed in the same direction.
This arrangement improves the efficiency of the representation for meshes
but complicates the data representation and stream compression, as with the
triangle meshes. Therefore, since each new patch shares one edge from the
previous patch, only the control points and colors defining the remaining
three edges must be specified in the data stream. For each new patch other
than the first, only eight control points and two corner colors must be
specified:

fi+1x1y1x2y2...x8y8 c1 c2

The edge flag, f, of the first patch must have a value of 0, which means start a
new patch. The twelve control points for this patch, x1y1 x2y2...x12y12, specify
the Bézier curves that define the boundary curves of the patch. c1 c2 c3 c4
represents a sequence of 4 * n color values, where n is the number of color
components specified by ColorSpace. The edge flag for each subsequent
patch can be 1, 2, or 3, depending on the desired position of the patch.
2 Implementing Smooth Shading 51

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
Table 10 lists the coordinates that define each adjacent patch. Figure 11
shows the adjacent patches.

Table 10 Coordinates for adjacent patches

Edge Flag Next Set of Vertices

f = 0 x1y1x2y2x3y3x4y4x5y5x6y6x7y7x8y8x9y9x10y10x11y11x12y12
c1c2c3c4

f = 1 x5y5x6y6x7y7x8y8x9y9x10y10x11y11x12y12
c3c4

Implicit Values:
x1y1 = x4y4 (of the previous patch)
c1 = c2 (of the previous patch)
x2y2 = x5y5 (of the previous patch)
c2 = c3 (of the previous patch)
x3y3 = x6y6 (of the previous patch)
x4y4 = x7y7 (of the previous patch)

f = 2 x5y5x6y6x7y7x8y8x9y9x10y10x11y11x12y12
c3c4

Implicit Values:
x1y1 = x7y7 (of the previous patch)
c1 = c3 (of the previous patch)
x2y2 = x8y8 (of the previous patch)
c2 = c4 (of the previous patch)
x3y3 = x9y9 (of the previous patch)
x4y4 = x10y10 (of the previous patch)

f = 3 x5y5x6y6x7y7x8y8x9y9x10y10x11y11x12y12
c3c4

Implicit Values:
x1y1 = x10y10 (of the previous patch)
c1 = c4 (of the previous patch)
x2y2 = x11y11 (of the previous patch)
c2 = c1 (of the previous patch)
x3y3 = x12y12 (of the previous patch)
x4y4 = x1y1 (of the previous patch)
52 Smooth Shading 10 October 1997

A
dobe S

ystem
s Incorporated
Figure 11 How the value of edge flag, f, determines the edge for the next patch

Note The data for at least one complete patch must be specified in DataSource.

Note Degenerate Bézier curves are allowed and are useful for certain graphical
effects. For example, a quadrant of a circle can be described by a Coons
patch with one degenerate side.

If the Function key value is specified, then the vertex color data for the mesh
must be specified by single values t, rather than color tuples c. All linear
interpolation within the triangle mesh will be done using the values of t, and
after interpolation, the value(s) that is/are returned from Function will be to
determine the color of each point.

Note Using ShadingType 6 differs from using an Indexed color space for the
shading. If an Indexed color space is used, the vertex coordinates are
converted to the base color space first, and linear interpolation occurs in that
color space. Thus, there is no opportunity to effect a nonlinear interpolation
using an Indexed color space.

4

3

2
1 c2

c1

1 2

12

3
4

5

6
7

8

9
11

10c1

c2
 c3

 c4

1

2

3
4

 c1
c2

Patch A

Patch B

4

3

2

1

c2

c1

fB = 1

Patch B
fB = 2

Patch B
fB = 3

When fB = 0
start a new patch
2 Implementing Smooth Shading 53

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
Example 9 Coons patch meshes (ShadingType 6)

%CONICAL.PS
%This example illustrates ShadingType 6 and the use of
%four Coons patches to create a “conical blend”.
%Define graphics state and other variables
/inch {72 mul} def
%Define the variables CX, CY, R, R3, R6, C, X3, X6, Y3, Y6
%Define startcolor, midcolor, and endcolor
...
% Define the shading and function dictionaries
gsave
<<

/ShadingType 6
/ColorSpace /DeviceRGB
/DataSource
[

% patch 1 data
...
% patch 2 data
...
% patch 3 data
...
% patch 4 data
...

]
>>

shfill
grestore
showpage

Note Complete PostScript language files containing these examples accompany
this document.

For a complete list and description of the keys in the ShadingType 6
Shading dictionary, see Table 4.13 in the Supplement: PostScript Language
Reference Manual.
54 Smooth Shading 10 October 1997

A
dobe S

ystem
s Incorporated
2.12 ShadingType 7: Tensor Product Patch Meshes

The ShadingType 7 shading method is almost identical to ShadingType 6,
except that instead of using a bicubic Coons patch defined by twelve control
points, a bicubic tensor product patch defined by sixteen control points is
used. The extra control points allow for more control of the color
interpolation across the patch. Each set of twelve coordinate pairs in the
DataSource key (see below) is replaced by a set of sixteen coordinate pairs.

As with the Coons patch surface, the tensor product surface is defined by a
mathematical mapping from a square patch (u,v) to the patch coordinate
system (x, y).

This is described as follows:

Pij is the control point for the i,j row and column of the tensor.

Since each Pij = (Xij, Yij), the surface can also be expressed as

Bi(u) and Bj(v) are Bernstein polynomials, where

The control points Pij are defined as follows:

P00 P01 P02 P03

P10 P11 P12 P13

P20 P21 P22 P23

P30 P31 P32 P33

S u v,() Pi j Bi u() Bj v()××
j 0=

3

∑
i 0=

3

∑=

x u v,() Xi j Bi u() Bj v()××
j 0=

3

∑
i 0=

3

∑=

y u v,() Yi j Bi u() Bj v()××
j 0=

3

∑
i 0=

3

∑=

B0 t() 1 t–()3
=

B1 t() 3t 1 t–()2
=

B2 t() 3t
2

1 t–()=

B3 t() t
3

=

2 Implementing Smooth Shading 55

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
This is shown graphically in Figure 12.

Figure 12 Pij control points

This is a convenient numbering scheme for the mathematical description, but
a better numbering scheme for the language is as follows:

This allows the Coons patch numbering to be a subset of the Tensor Product
patch numbering.

The tensor product patch mapping, like the Coons patch mapping, is
controlled by the location and shape of the four boundary curves. Unlike the
Coons patch, however, the tensor product patch has four more internal
control points to adjust the mapping. Each control point follows a trajectory
defined by the four control points along a row or a column. Each row or
column of control points defines its own cubic Bézier curve, and this is the
trajectory each of the control points of the moving curve take. The tensor
product patch gives more control over mapping than does the Coons patch.
However, the Coons patch is easier to use and more concise because the
internal control points are implicitly specified by the boundary control points.

0 11 10 9

1 12 15 8

2 13 14 7

3 4 5 6

P10

P30

P20

P11 P12

P22P21

P31

P32

P33

P23

P13

P03

P02

P01

P00
56 Smooth Shading 10 October 1997

A
dobe S

ystem
s Incorporated
Table 11 shows the keys that define a Shading dictionary for ShadingType
7. The keys are described in more detail, below.

Note The BitsPerCoordinate, BitsPerComponent, BitsPerFlag, and Decode
keys are required unless the value of DataSource is an array.

All of the keys are defined as for ShadingType 6. ShadingType must be 7.
The only difference is that each set of 12 coordinate pairs in the DataSource
key is replaced with a set of 16 coordinate pairs.

See the earlier discussion of DataSource for ShadingType 4 and 6.

Table 11 Keys for ShadingType 7 Shading dictionaries

Key Type

ShadingType integer required

ColorSpace name or array required

Background array optional

BBox array optional

AntiAlias boolean optional

DataSource various required

BitsPerCoordinate integer required (see note)

BitsPerComponent integer required (see note)

BitsPerFlag integer required (see note)

Decode array required (see note)

Function dictionary or array optional
2 Implementing Smooth Shading 57

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
Example 10 Tensor Product patch meshes (ShadingType 7)

%TENSOR.PS
%This example demonstrates smooth shading using Tensor
%Patches.
%Define graphics state and other variables.
/DeviceRGB setcolorspace
/inch {72 mul} def
...
%Define the variables LowerLeft, CP01, CP02, LowerRight,
%CP03, CP04, UpperRight, CP05, CP06, UpperLeft, CP07, CP08
...
<<
 /ShadingType 7
 /ColorSpace /DeviceRGB
 /DataSource [
 0%start a new patch
 LowerLeft CP01 CP02
 LowerRight CP03 CP04
 UpperRight CP05 CP06
 UpperLeft CP07 CP08
 LowerLeft 3 {2 copy} repeat
 0 1 1 0.5 0 1 0.75 0 0 1 1 0.5
]
>> shfill
...
showpage

Note Complete PostScript language files containing these examples accompany
this document.
58 Smooth Shading 10 October 1997

A
dobe S

ystem
s Incorporated
2.13 Functions

Function objects are tightly associated with smooth shading, since functions
may be used to provide close control over the shape of the color transitions
across the geometry of the shading.

Functions may be thought of as “m-in, n-out” numerical transformations.
Each function dictionary implicitly declares the sizes of m and n, and
explicitly declares a domain of input values for which the function is defined
and a range (of output values outside of which no result value will fall).
Domain and range intervals must be bounded and rectangular in the input or
output space of the function. They are assumed to be closed in the
mathematical sense; that is, the edges of the interval are included in the
interval, as in [0,1]. The function must be defined (but not necessarily
continuous or smooth) across its entire domain. If a function is called with
input values outside the declared domain, the inputs will be clipped to that
domain. If any input in the declared domain of the function would cause the
function to output a value outside the declared range, that output value is
clipped to that range.

Each Shading dictionary that uses a function object must specify how it uses
the function and how it maps the Shading domain into the domain of the
function. If the output of the function is modified by the Shading dictionary
before use, this modification must also be specified. Shading dictionaries
that use functions must note that the declared domain of the function may be
smaller than the actual domain of the function, and the declared range may be
larger than the actual range of the function. Because of this, it is usually
necessary to selectively specify the function so that its domain and range are
appropriate for use in the Shading dictionary.

Three types of functions are supported in LanguageLevel 3. They are as
follows:

• Sampled functions: these are the most general type of function. The
mapping from input to output is controlled via a sample table that can be
used to approximate any desired mathematical function. Sampled
functions have been used to approximate logarithmic, sinusoidal, and
Gaussian functions, to name just a few.

• Exponential interpolation functions: these are conceptually the simplest
type of function. These can be used wherever a simple linear or
exponential gradient fill is required.

• Stitching functions: these are used to stitch or join together the output of
two or more other types of functions.

Note Functions with high spatial frequency (or discontinuous) color transitions
may display aliasing effects when imaged at low effective resolutions.
2 Implementing Smooth Shading 59

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
2.14 Function Dictionaries

Each class of a Function dictionary has a FunctionType key whose value
specifies the representation of the function, a set of keys that parameterize the
representation, and additional data needed by that representation.

All Function dictionaries share the following keys: FunctionType, Domain,
and Range. FunctionType and Domain are required for all Function
dictionaries. The Range key is required only for FunctionType 0 Function
dictionaries.

In addition, each type of Function dictionary must include keys appropriate,
or unique, to the function type. The output dimensionality (range) of a
function can usually be deduced from other keys of the function; if not, the
Range key is required. The dimensionality of the function inferred from the
Domain and Range declarations must be consistent with the dimensionality
inferred from other keys of the function.

The Domain value of a Function dictionary must be a superset of the
Domain value of its associated Shading dictionary.

Each of the three Function types are supported within all Shading
dictionaries with the following exception: ShadingType 1 dictionaries only
support FunctionType 0 Function dictionaries.

Note There is a new implicit resource category called FunctionType. Currently,
the only supported instances of this category type are 0, 2, and 3,
corresponding to the Function types discussed in Section 2.13 through 2.17.

For a complete list and description of the keys in Function dictionaries, see
Table 3.14 in the Supplement: PostScript Language Reference Manual.

2.15 FunctionType 0: Sampled Functions

Sampled functions use a sequence of sample values to provide an
approximation for functions whose domains and ranges are bounded. The
samples are organized in a table or array. The dimensionality of the sample
table or array is equal to the dimensionality of the input domain. Samples
may have more than one component. The number of components in each
sample is equal to the dimensionality of the output range.

Sampled functions are highly general and offer reasonably accurate
representations of arbitrary analytic functions at a low expense. For example,
a single-input (m equal to 1) sinusoidal function can be represented over the
range [0 180] with an average error of only 1%, using just ten samples and
linear interpolation (Order equals 1). Two-input functions will take
60 Smooth Shading 10 October 1997

A
dobe S

ystem
s Incorporated
significantly more samples, but usually not a prohibitive number, as long as
the function does not have high-frequency variations (when the sample
values vary greatly over different locations).

The dimensionality of a sampled function is restricted only by
implementation limits. However, the number of samples required to represent
high-dimensionality functions multiplies very rapidly unless the sampling
resolution is very low; also note that the process of multilinear interpolation
becomes computationally intensive if the input dimensionality is greater than
two. The multidimensional spline interpolation is even more computationally
intensive.

Note Functions are assumed to be reusable; therefore, the internal representation
of a sampled function must fit entirely within system memory, or a VMerror
will occur. This limit is dependent on the amount of available system memory.

Table 12 shows the keys that define a Function dictionary for FunctionType
0. The keys are described in more detail below.

The FunctionType, Domain, and Range keys are common to all three
Function types. FunctionType and Domain are required keys. Range is
required for FunctionType 0, only.

FunctionType in an integer value specifying the Function type, which is, in
this case, 0.

Domain is an array of numbers, interpreted in pairs. Each pair of numbers
defines the domain of one input value. The smaller bound must precede the
larger bound in each pair. The size of the array implicitly defines the input

Table 12 Keys for FunctionType 0 Function dictionaries

Key Type

FunctionType integer required

Domain array required

Range array optional

Order integer optional

DataSource various required

BitsPerSample integer required

Encode array optional

Decode array optional

Size array required
2 Implementing Smooth Shading 61

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
dimensionality m of an m-in n-out function; this is true because m represents
one-half of the number of elements in the array. Input values that are outside
the declared domain are clipped to the nearest boundary value.

The Range key specifies an array of numbers that are also interpreted in
pairs. Each pair defines the range of one output value. The smaller bound
must precede the larger bound in each pair. The size of the array implicitly
defines the output dimensionality n of an m-in n-out function; n represents
one-half of the number of elements in the array. Output values are clipped to
the defined range. If the range is not defined, no clipping will be performed.

Order is an optional integer value that specifies the order of interpolation
between samples. The value 1, which is the default value, specifies a linear
interpolation. The value 3 specifies a cubic spline interpolation.

DataSource is a required key that may be a string or a reusable stream. It
provides the sequence of sample values that specifies the function. If the
amount of sampled data is greater than 64Kb, a reusable stream must be used
(See Section 3.3.7 of the Supplement: PostScript Language Reference
Manual).

The BitsPerSample key is a required integer value that specifies the number
of bits used to represent each sample value. The values are 1, 2, 4, 8, 12, 16,
24, and 32.

Encode is an optional array that specifies the linear mapping of input values
into the domain of the sample table for the function. The default value is as
follows: [0 (Size0 - 1)...].

Decode is an optional array that specifies the linear mapping of sample
values into the range of values appropriate for the output variables of the
function. The default value is the same as for Range.

Figure 13 Mapping input values to function results (output values)

Size is a required array that specifies the number of samples in each input
dimension of the sample table.

input value

Encode
Sample Table
(DataSource)

Decode

maps into

maps into

interpolated values
out to

maps to function result(s)
62 Smooth Shading 10 October 1997

A
dobe S

ystem
s Incorporated
The Domain, Encode, and Size keys determine how the input variable
values of the function will be mapped into the sample table. For example, if
the Domain is [-1 1 -1 1] and the Size is [21 31], the default Encode is
[0 20 0 30], which maps the entire Domain into the full set of sample table
entries. Other values of Encode may be used.

In general, for the ith input variable di, the corresponding encoded value ei, is

where Di and Ei are elements of the Domain and Encode arrays, respectively.
If a resultant encoded value ei falls outside the domain [0, Sizen - 1], the value
is clipped to the nearest allowed value. The encoded input values are real
numbers, not restricted to integers, and multi-variable interpolation is used to
determine an output value from the surrounding nearest-match sample table
values.

Similarly, the Range, Decode, and BitsPerSample keys determine how the
sample values of the function are mapped into output values. This is
essentially identical to the way image sample values are decoded. The value
of BitsPerSample implies that all sample values must be in the range
[0 (2BitsPerSample - 1)]. This range is linearly transformed by the Decode array
to an output range. The default Decode array is equal to the Range array,
indicating a mapping of the entire possible sample range into the entire
possible output range. Other values of Decode may be used.

In general, for the ith sample component si, the corresponding output value ri,
is

where Di are elements of the Decode array.

As was mentioned previously, samples are encoded and interpreted similarly
to image samples, except that function sample data for a new row must
continue to be packed with the previous row and need not necessarily start on
a byte boundary. No row padding is done with sampled function data. As with
image data, a sequence of samples is considered to represent an array in
which the first dimension of the array varies fastest; that is, in a two-
dimensional array of data, the x component varies faster than the y
component.

Consider the same sampled function with 4-bit samples in an array
containing 21 columns and 31 rows, and consider using this function to
represent a halftone spot function. A spot function takes two arguments, x and
y, in the domain [-1 1], and returns one value, z, in the range [-1 1]. In the
Function dictionary, the value of Domain would be [-1 1 -1 1], the value of
Size would be [21 31], and the value of Encode would be [0 20 0 30]. The

ei di D2i–()
E2i 1+ E2i–()
D2i 1+ D2i–()

-----------------------------------× E2i+=

ri si

D2i 1+ D2i–()

2
BitPerSample

1–()
---× D2i+=
2 Implementing Smooth Shading 63

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
value of BitsPerSample would be 4, the value of Range would be [-1 1], and
the value of Decode would be [-1 1]. The x argument would be linearly
transformed by the encoding to the domain [0 20] and the y argument to the
domain [0 30]. Using bilinear interpolation between sample points, the
function computes a value for z, which will be in the range [0 15], and the
decoding transforms z to a number in the range [-1 1] for the result. The
sample array is stored in a stream of

326 bytes = [31 rows * 21 samples/row * 4 bits/sample / 8 bits/byte].

The first byte contains the sample for the point (-1, -1) in the high-order 4 bits
of the byte and the sample for the point (-0.9, -1) in the low-order 4 bits of the
byte.

The Encode key gives the linear mapping between the keys Decode and
Size. The default value of Encode is [0 (s0 - 1) 0 (s1 - 1)], where si is the ith
value in the Size array. A non-default encoding can be specified, but the
beginning and ending points for the encoding must be contained between 0
and (si - 1).

The Decode key may be used to increase the accuracy of encoded samples
corresponding to certain values in the range. For example, if the desired range
of the function is [-1 1] and the value of BitsPerSample is 4, the usual value
of Decode would be [-1 1], and the sample values would be integers in the
interval [0 15]. But if these values are used, the midpoint of the range of the
function (0) would not be represented exactly by any sample value, since it
would fall halfway between 7 and 8. Instead, one could use a Decode array
of [-1 +1.1428571] and sample values in the interval [0 14]. In this way, the
desired effective range of [-1 1] would be achieved, and the range value 0
would be precisely represented by the sample value 7. This example is
illustrated in Figure 14.

The value of the Size of an input dimension can be 1, in which case all input
values in that dimension will be mapped to the single allowed value. If the
Size of an input dimension is less than 4, cubic spline interpolation is not
possible, so if Order 3 is specified, it is ignored.
64 Smooth Shading 10 October 1997

A
dobe S

ystem
s Incorporated
Figure 14 Mapping with the Decode Array

Example 11 Sampled function (FunctionType 0)

%AXSHLOG.PS
<<

/FunctionType 0
 /Order 1
 /BitsPerSample 16
 /DataSource

< 0000 0000 0000
4D10 4D10 4D10
...
F448 F448 F448
FFFF FFFF FFFF >

 /Domain [0 1]
 /Decode [1 0 0 1 1 0.5]
 /Range [0 1 0 1 0 1]
 /Size [10]
>>

Note Complete PostScript language files containing these examples accompany
this document.

For a complete list and description of the keys in the FunctionType 0
Function dictionary, see Table 3.15 in the Supplement: PostScript Language
Reference Manual.

1

-1

+1

7 8 15
0

1 7 8 14

-1

+1

0

samples

samples

ra
ng

e
ra

ng
e

 /Decode [-1 1]

 /Decode [-1 1.1429]
2 Implementing Smooth Shading 65

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
2.16 FunctionType 2: Exponential Interpolation Function

Exponential interpolation is conceptually the simplest function type of the
three types supported in LanguageLevel 3. FunctionType 2 functions are
always 1-in (m equals 1), n-out, defining an exponential interpolation in one
variable. In the simplest case, with the exponent equal to one, the function
defines a linear interpolation over its input domain.

Table 13 shows the keys that define a Function dictionary for FunctionType
2. The keys are described in more detail, below.

The FunctionType, Domain, and Range keys are defined as for
FunctionType 0.

FunctionType must be 2.

The mapping of the input value of the function to its output value(s) is
determined by the three keys C0, C1, and N.

The C0 key is an optional number or array that defines the function result
(output value) for an input value of 0. It must be the same size as C1. The size
of the function is n-out, where n is the size of the array. The default value is 0.

The C1 key is an optional number array that defines the function result
(output value) for an input value of 1. It must be the same size as C0. The
default value is 1.

N is a required number that defines the interpolation exponent (to which the
input variable is raised). Each input value t to the function will return the
value specified by

c0 + tN (c1 - c0)

Values of Domain must constrain t such that, if N is not an integer, all values
of t must be greater than or equal to zero, and if N is negative, no value of t
may be zero.

Table 13 Keys for FunctionType 2 Function dictionaries

Key Type

FunctionType integer required

Domain array required

Range array optional

C0 number or array optional

C1 number of array optional

N number required
66 Smooth Shading 10 October 1997

A
dobe S

ystem
s Incorporated
For typical use as an exponential interpolation function, the value of Domain
will be declared as [0 1], and the value of N will be a number greater than 0.
The Range key may be used to clip the output to a desired range.

Example 12 Exponential Interpolation function (FunctionType 2)

%AXSHO1.PS
<<

/FunctionType 2
/Domain [0 1]
/C0 0 % result for input 0 = black
/C1 1 % result for input 1 = white
/N 1 % Exponent = linear

>>

Note Complete PostScript language files containing these examples accompany
this document.

For a complete list and description of the keys in the FunctionType 2
Function dictionary, see Table 3.16 in the Supplement: PostScript Language
Reference Manual.

2.17 FunctionType 3: 1-Input Stitching Function

Stitching Functions join or stitch the outputs of two or more separate function
domains across a single domain. That is, FunctionType 3 functions define a
stitching of the subdomains of several one-input functions (m equals 1) to
produce a single, new one-input function. One example use of this function
would be to create a rainbow by stitching together the separate bands of color.
One dictionary and one function would be needed for each band of the
rainbow to define the start and end colors in the gradient fill.

Stitching functions can be used to obtain what is known in some applications
as a mid-linear blend, for example, a gradient fill that runs from green to red
and back to green. One complex way to obtain this gradient fill would be to
use a sampled function to define a color ramp that goes from 0 to 1 then back
to 0. A simpler way to due this would be to use a one-input stitching function
that contains two exponential interpolation functions with exponents of one
(see the previous section). The first function would then define a ramp from 0
to 1, and the second function would define the ramp from 1 back to 0. By
setting the Bounds key of the stitching function to 0.5, the end color of the
first color ramp will occur in the middle of the domain.

The stitching function is designed to make it easy to combine several
functions to be used within one shading, over different parts of the domain
defined in the Shading dictionary. The same effect can be achieved by
creating a separate Shading dictionary for each function, where the
dictionaries have adjacent domains. However, since each Shading dictionary
2 Implementing Smooth Shading 67

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
would have similar keys, and because the overall effect desired is one
Shading dictionary, it is more convenient to have a single Shading
dictionary with a multiple function definition.

FunctionType 3 Function dictionaries provide a general mechanism to
invert the domains of “1-in” functions.

Table 14 shows the keys that define a Function dictionary for

FunctionType 3. The keys are described in more detail below.

The FunctionType, Domain, and Range keys are defined the same as with
FunctionType 0.

FunctionType must be 3.

Functions is a required array of one-in function dictionaries making up the
stitching function. Output dimensionality of all functions must be compatible
with the value of Range.

Bounds is a required array of numbers, the size of which must be one less
than the size of the Functions array. Elements of this array must be in order
of increasing magnitude, and each element must be within the value of
Domain. The Bounds and Domain keys define the intervals for which each
function from the Functions array is used to determine the value of the
stitched function. Each interval is mapped through the Encode array into the
domain of the corresponding function.

The Encode array is also required and must be and array of numbers. The
size of this array must be twice the size of the Functions array. A pair of
Encode array values is associate with each function. The values map each
subset of the domain defined by Domain and the Bounds array to the domain
of the corresponding function.

Table 14 Keys for FunctionType 3 Function dictionaries

Key Type

FunctionType integer required

Domain array required

Range array optional

Functions array required

Bounds array required

Encode array required
68 Smooth Shading 10 October 1997

A
dobe S

ystem
s Incorporated
An input d to the stitching function in the subdomain

will be encoded as follows:

where Bi and Ei are elements of the Bounds array and Encode array,
respectively, and the resulting value e is routed as input to the ith function in
the Function array. This is similar to the Encode definition in the sampled
function description. For these purposes, B-1 is considered to be the first
element of the Domain array, and Bn (where n is the number of subdomains)
is considered to be the second element of the Domain array. The subdomain
mappings may be inverted by allowing E2i+1 to be less than E2i.

B2i 1– d B2i≤ ≤

e d B2i 1––()
E2i 1+ E2i–

B2i B2i 1––
---------------------------------× E2i+=
2 Implementing Smooth Shading 69

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
Example 13 Stitching function (FunctionType 3)

%AXSTITCH.PS
%This is a very simple illustration of axial shading
%using a stitching function with two exponential
%interpolation shading functions.
%Set up graphics state and other variables
/inch {72 mul} def
...
%Define the two exponential shading functions
/Function1 7 dict def Function1 begin
 /FunctionType 2 def
 /Domain [0 1] def
 /C0 [1 0 1] def
 /C1 [1 1 0] def
 /N 1 def
end
/Function2 7 dict def Function2 begin
 /FunctionType 2 def
 /Domain [0 1] def
 /C0 [1 1 0] def
 /C1 [0 1 1] def
 /N 1 def
end
...
gsave
 rectclip
 newpath
% define shading dictionary and stitching function
 <<
 /ShadingType 2
 /ColorSpace /DeviceRGB
 /Coords [1 inch 1 inch 7.5 inch 10 inch]
 /Function <<
 /FunctionType 3
 /Functions [Function1 Function2]
 /Domain [0 1]
 /Bounds [0.5]
 /Encode [0 1 0 1]
 >>
 >> shfill
grestore
...
showpage

Note Complete PostScript language files containing these examples accompany
this document.

For a complete list and description of the keys in the FunctionType 3
Function dictionary, see Table 3.17 in the Supplement: PostScript Language
Reference Manual.
70 Smooth Shading 10 October 1997

A
dobe S

ystem
s Incorporated
2.18 Currentsmoothness and Setsmoothness Operators

The currentsmoothness operator returns the current value of the
smoothness parameter in the graphics state. The returned value is in the range
[0,1].

The setsmoothness operator is used to set the smoothness parameter in the
graphics state. It takes as input an integer or real value in the range [0,1]. This
operator is used to control the quality of smooth shaded output, indirectly
affecting rendering performance. The trade-off of quality and performance
depends on the value: a higher (larger) value will result in less smoothness
but better performance, a lower (smaller) value will result in more
smoothness but a slower or lesser performance.

Smoothness, in this context, is defined as the allowed color error between the
following: smooth shading that is approximated with piecewise linear
interpolation and the true shading of a linear or non-linear shading function.

The error is measured for each color component, a comparison is then made,
and the maximum error value is used. Each error values is specified as a
percentage of the range of its associated color component. The percentage is
expressed as a value in the range [0,1].

For example, a value of 0.1 represents an allowed error of 10% for each color
component.

Smoothness is dependent on several factors, including the number of
displayable or printable colors, the resolution of the screen or print device,
and the acceptable level of performance for the device.

See Chapter 8 of the Supplement: PostScript Language Reference Manual for
more information on the smoothness operators.
2 Implementing Smooth Shading 71

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
3 Smooth Shading Tips

The following is a list of tips that can be used by developers who are
interested in implementing smooth shading. In addition, the examples given
in this document, and the accompanying sample files, can be used as guides
for implementing each smooth shading type or method.

Pattern dictionaries vs. shfill

• Use a Pattern dictionary to fill paths.

• Use shfill for creating shading geometries.

PatternType 1 pattern dictionaries using shfill in PaintProc

To produce tiling patterns (repeated patterns), shfill can be called from within
the PaintProc of a Type 1 Pattern dictionary.

Using the smoothness operators

Although these operators are available to applications developers, they are
more useful to printing device manufacturers and developers for balancing
performance and quality issues with the product.

Best uses for each function type

Exponential interpolation functions are best suited for the axial and radial
shading methods (ShadingType 2 and 3) used by draw and illustration
applications.
72 Smooth Shading 10 October 1997

A
dobe S

ystem
s Incorporated
Best uses of each smooth shading type

• Function-based shading (ShadingType 1) can be used to generate objects
such as an RGB color cube. The color cube can be implemented with three
shading dictionaries that use sampled functions. The sample tables in the
sampled functions only use one-bit data to specify the color components at
the corners of the cube.

• Axial and radial shading methods (ShadingType 2 and 3) are most
commonly used for creating gradient fills in draw and illustration
applications.

• Axial shading is good for gradient fills that vary smoothly (either linearly
or exponentially) from one point to the next.

• Radial shading is most commonly used to generate the illusion of
spherical, conical, and cylindrical shapes or objects.

• Triangle meshes (ShadingType 4 and 5) can be used for creating
polygonal gradient fills.

• Coons patch meshes (ShadingType 6 and 7) can be used for creating
conical gradient fills. A conical gradient fill is a color fan that revolves
around some point (not necessarily a central point). The color fan can be
implemented with four Coons patches, one for each quadrant.

Smooth shading and compression

All of the stream (file) data can be compressed by using a standard
compression filter. This applies to the DataSource keys for ShadingType 4,
5, 6, 7, and FunctionType 0 and 3 (indirectly). This does not apply if the data
is in the form of an array or string.
3 Smooth Shading Tips 73

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
74 Smooth Shading 10 October 1997

Appendix A
Bibliography of Outside
Sources
A
dobe S

ystem
s Incorporated
While this in not an exhaustive list of references, it will give the reader some
sources for the mathematical concepts covered in this document.

Farin, Gerald, Curves and Surfaces for CAGD, Third Edition, Academic
Press, Inc. Harcourt Brace Jovanovich, Publishers, 1993. ISBN 0-12-249052-
5. Chapter 16 covers information on Tensor product patches. Chapter 20
covers information on Coons patches.

Foley, J. and A. van Dam, Fundamentals of Interactive Computer Graphics,
Second Edition, Addison-Wesley, 1982. ISBN 0-201-14468-9. Chapter 11
covers information on Parabolic Bicubic surfaces. Chpater 16, Section 2.4,
covers information on Gouraud shading.

Walberg, George, Digital Image Warping, Third Edition, IEEE Computer
Society Press, 1994. ISBN 0-8166-8944-7. Chapter 5 covers information on
interpolation.
75

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
76 Appendix A: Bibliography of Outside Sources 10 October 1997

Index
A
dobe S

ystem
s Incorporated
A

AntiAlias 27, 29, 32, 36, 45, 50
Axial Shading 15, 29

B

Background 18, 23, 26, 27, 29,
 32, 34, 36, 45, 50

BBox 23, 27, 29, 32, 33, 36, 45,
 50

Bernstein Polynomials 55
Bézier Control Points 47
Bézier Curve 15, 47, 51, 53, 56
Bézier Patch Mesh 13
Bilinear Interpolation 47, 48, 64
BitsPerComponent 36, 37, 41, 45,

 49, 50, 57
BitsPerCoordinate 36, 41, 45, 49,

 50, 57
BitsPerFlag 36, 37, 41, 49, 50, 57
BitsPerSample 62, 64
Bounds 67, 68

C

C0 66
C1 66
ColorSpace 18, 23, 24, 25, 26, 27,

 29, 30, 32, 34, 36, 37, 38,
 41, 45, 50, 51

Contours 13
Coons Patch 47, 48, 55, 56
Coons Patch Mesh 15, 48
Coords 29, 32
Cubic Spline Interpolation 62, 64
currentfile 18
currentsmoothness 16, 17, 71

D

DataSource 23, 36, 37, 38, 41, 45,
 49, 50, 55, 57, 62, 73

Decode 36, 37, 38, 41, 45, 49,
 50, 62, 63, 64

DeviceN 26
Domain 15, 27, 29, 32, 33, 34,

 38, 59, 60, 61, 63, 66, 68,
 69

E

Encode 38, 62, 63, 68, 69
Exponential Interpolation 67, 72
Extend 30, 32, 33, 34

F

fill 14, 21, 23
Free-Form Triangle Mesh 15, 36
Function xi, 14, 17, 23, 26, 27,

 29, 30, 32, 33, 34, 37, 38,
 42, 50, 53, 60, 61, 63, 65,
 66, 67, 69

Function-Based Shading 15, 26
Functions 68
FunctionType 60, 61, 65, 66, 67,

 68
FunctionType 0 60, 61, 73
FunctionType 2 66
FunctionType 3 67, 70, 73

G

Gouraud Shading 15, 36, 42
Gradient Fill xi, 13, 21, 23, 24,

 27, 29, 30, 33, 47, 73
77

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
H

Halftone 63

I

image 18, 42, 63
imagemask 14, 21, 23
Implementation 21
Indexed 26, 30, 34, 42, 53

L

LanguageLevel 3 xi, xii, 14, 16,
 21, 23, 59, 66

Lattice-Form Triangle Mesh 15, 45
Linear Interpolation 29, 42, 48, 53,

 62, 66
Linear Parametric Variable 33
Linear Transformation 64

M

makepattern xi, 21
Matrix 27
Multilinear Interpolation 61
Multi-Variable Interpolation 63

N

N 66
Nonlinear Interpolation 29, 36, 47

O

Order 62, 64

P

PaintProc 17, 22, 23, 72
Parametric Equation 33
Pattern xi, 14, 16, 17, 21, 23, 24,

 26, 72
PatternType 14, 21, 23
PatternType 1 17, 22, 23
PatternType 2 21, 23

R

Radial Shading 15
Range 59, 60, 61, 62, 63, 64, 66,

 67, 68, 71
rangecheck 18, 41

S

Sampled Functions 60
setcolor 14, 21
setcolorspace 21
setpattern xi, 14, 21
setsmoothness 16, 17, 71
Shading 14, 17, 18, 21, 22, 23,

 24, 26, 27, 29, 31, 32, 36,
 38, 43, 45, 46, 49, 54, 57,
 59, 60, 67

ShadingType 23, 24, 25, 26, 29,
 32, 36, 41, 45, 50

ShadingType 0 23
ShadingType 1 15, 16, 26, 27, 60
ShadingType 2 15, 29, 72
ShadingType 3 15, 33, 72
ShadingType 4 15, 16, 36, 37, 50,

 73
ShadingType 5 15, 16, 37, 44, 50,

 73
ShadingType 6 15, 16, 37, 53, 73
ShadingType 7 15, 16, 37, 55, 73
shfill xi, 14, 17, 18, 23, 24, 72
show 14, 21
Sinusoidal Function 60
Size 62, 63, 64
Spline Interpolation 61
Spot Function 63
Stitching Function 67, 68, 69
stroke 14, 21

T

Tensor Product Patch 15, 55, 56
Type 1 Pattern 72

U

undefinedresult 18, 27

V

VerticesPerRow 44, 46

X

XUID 21
78 10 October 1997

	Examples
	Smooth Shading
	1 Smooth Shading
	1.1 Overview of Smooth Shading
	1.2 Benefits of Using Smooth Shading

	2 Implementing Smooth Shading
	2.1 Shfill Operator
	2.2 Pattern Dictionaries
	2.3 Painting With a Pattern Dictionary
	2.4 Shading Dictionaries
	2.5 ColorSpace Key for Shading Dictionaries
	2.6 ShadingType 1: Function-Based Shading
	2.7 ShadingType 2: Axial Shading
	2.8 ShadingType 3: Radial Shading
	2.9 ShadingType 4: Free-Form Gouraud-Shaded Triang...
	2.10 ShadingType 5: Lattice-Form Gouraud-Shaded Tr...
	2.11 ShadingType 6: Coons patch meshes
	2.12 ShadingType 7: Tensor Product Patch Meshes
	2.13 Functions
	2.14 Function Dictionaries
	2.15 FunctionType 0: Sampled Functions
	2.16 FunctionType 2: Exponential Interpolation Fun...
	2.17 FunctionType 3: 1-Input Stitching Function
	2.18 Currentsmoothness and Setsmoothness Operators...

	3 Smooth Shading Tips

