<‘®

Adobe’ PostScript3”

Smooth Shading

Adobe® Developers Association

10 October 1997

Technical Note #5600

LanguageLevel 3

Adobe Systems Incorporated

Corporate Headquarters Eastern Regional Office
345 Park Avenue 24 New England

San Jose, CA 95110-2704 Executive Park

(408) 536-6000 Main Number Burlington, MA 01803

(617) 273-2120

Adobe Systems Europe Limited Adobe Systems Japan
Adobe House, Mid New Cultins Yebisu Garden Place Tower
Edinburgh EH11 4DU 4-20-3 Ebisu, Shibuya-ku
Scotland, United Kingdom Tokyo 150 Japan
+44-131-453-2211 +81-3-5423-8100

PN LPS5600

Adobe Systems Incorporated

Copyright © 1997 Adobe Systems Incorporated. All rights reserved.
NOTICE: All information contained herein is the property of Adobe Systems Incorporated.

No part of this publication (whether in hardcopy or el ectronic form) may be reproduced or transmitted,
inany form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written consent of the publisher.

PostScript is aregistered trademark of Adobe Systems Incorporated. All instances of the name
PostScript in the text are references to the PostScript language as defined by Adobe Systems
Incorporated unless otherwise stated. The name PostScript also is used as a product trademark for
Adobe Systems’ implementation of the PostScript language interpreter.

Adobe, PostScript, PostScript 3, and the PostScript logo are trademarks of Adobe Systems
Incorporated. Apple and Macintosh are trademarks of Apple Computer, Inc. registered inthe U.S. and
other countries. All other trademarks are the property of their respective owners.

Contents

1 Smooth Shading 13
Overview of Smooth Shading 13
Benefits of Using Smooth Shading 16

2 Implementing Smooth Shading 17
Shfill Operator 17
Pattern Dictionaries 21
Painting With a Pattern Dictionary 21
Shading Dictionaries 23
ColorSpace Key for Shading Dictionaries 24
ShadingType 1: Function-Based Shading 26
ShadingType 2: Axial Shading 29
ShadingType 3: Radial Shading 32
ShadingType 4: Free-Form Gouraud-Shaded Triangle Meshes 36
ShadingType 5: Lattice-Form Gouraud-Shaded Triangle Meshes 44
ShadingType 6: Coons patch meshes 47
ShadingType 7: Tensor Product Patch Meshes 55
Functions 59
Function Dictionaries 60
FunctionType 0: Sampled Functions 60
FunctionType 2: Exponential Interpolation Function 66
FunctionType 3: 1-Input Stitching Function 67
Currentsmoothness and Setsmoothness Operators 71

3 Smooth Shading Tips 72

pajelodioou] SWalsAS agopy

pajelod.iodu| SWalsAS aqopy

10 October 1997

Contents

iv

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Figures

Hierarchy of dictionaries used for smooth shading 17

Inputs to the shfill operator 18

Inputs to the makepattern and setpattern operators 21

Defining a new triangle (f=0) 38

How the value of the edge flag determines which edge is used for the next tri-
angle 39

Varying the value of the edge flag to create different shapes 41

Simple lattice forms 44

Coordinate mapping from a unit square to a four-sided patch 47

Patch appearance, painted area, and boundary 49

Color values and edge flags in Coons patch meshes 50

How the value of edge flag, f, determines the edge for the next patch 53
Pij control points 56

Mapping input values to function results (output values) 62

Mapping with the Decode Array 65

pajelodioou] SWalsAS agopy

pajelodioou] SwalsAS agopy

10 October 1997

Figures

vi

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14

Tables

Keys for the PatternType 2 Pattern dictionary 21
Keys for ShadingType 1 Shading dictionaries 26
Keys for ShadingType 2 Shading dictionaries 29
Keys for ShadingType 3 Shading dictionaries 32
Keys for ShadingType 4 Shading dictionaries 36
Edge flag values for each triangle in Mesh 1 40
Edge flag values for each triangle in Mesh 2 40
Keys for ShadingType 5 Shading dictionaries 45
Keys for ShadingType 6 Shading dictionaries 49
Coordinates for adjacent patches 52

Keys for ShadingType 7 Shading dictionaries 57
Keys for FunctionType 0 Function dictionaries 61
Keys for FunctionType 2 Function dictionaries 66
Keys for FunctionType 3 Function dictionaries 68

pajelodioou] SWaISAS agopy

vii

pajelod.iodu| SwalsAS aqopy

10 October 1997

Tables

viii

Example 1
Example 2
Example 3
Example 4
Example 5
Example 6
Example 7
Example 8
Example 9
Example 10
Example 11
Example 12
Example 13

Examples

Using shfill for smooth shading 19

Using shfill in a PaintProc procedure 20

Using a PatternType 2 Pattern dictionary for shading 22
Function-based shading (ShadingType 1) 28

Axial shading (ShadingType 2) 31

Radial shading (ShadingType 3) 35

Free-form Gouraud-shaded triangle meshes (ShadingType 4) 43
Lattice-form Gouraud-shaded triangle meshes (ShadingType 5) 46
Coons patch meshes (ShadingType 6) 54

Tensor Product patch meshes (ShadingType 7) 58

Sampled function (FunctionType 0) 65

Exponential Interpolation function (FunctionType 2) 67

Stitching function (FunctionType 3) 70

pajelodioou] SWaISAS agopy

pajelodioou| SwalSAS agopy

10 October 1997

Figures

Preface

This Document

This document provides a detailed description of smooth shading, a
LanguageLevel 3 feature of Adobe® PostScript® that enables a devel oper to
add higher-quality monochrome or color gradient fills to an application.

Intended Audience

This document is written for software devel opers who are interested in
learning about smooth shading or adding smooth shading capabilities to an
application that supports PostScript display or printing devices. It is assumed
that the developer has an adequate background in mathematics. This
knowledge will help in the understanding of the complex formulae and
functions used to describe the implementation of the shading methods.

Organization of This Document

Section 1, “ Smooth Shading,” provides an overview of the Languagel evel 3
feature and all of its parts. A comparison of current and previous methods of
shading is made. The uses for, and benefits of, this feature in a PostScript
language environment are also covered.

Section 2, “Implementing Smooth Shading,” defines the PostScript language
extensions for smooth shading. Each shading method and the underlying
mathematical elements supporting the method are described in detail. Several
examples defining dictionary parameters (keys) areincluded as well as
several workable code samples for each of the supported shading methods.
The examples shown include use of the Pattern and Function dictionaries,
and the shfill, makepattern, and setpattern operators.

Section 3, “ Smooth Shading Tips,” gives helpful information on using
smooth shading and functions and selecting the best smooth shading method
for specific application needs.

xi

pajelodioou] SWalsAS agopy

Adobe Systems Incorporated

Xii

Preface

Related Publications

Supplement: PostScript Language Reference Manual (Languagelevel 3
Soecification and Adobe PostScript 3™ Version 3010 Product Supplement),
available from the Adobe Devel opers Association, describes the formal
extensions to the PostScript language that have occurred since the publication
of the PostScript Language Reference Manual, Second Edition. This
supplement also includes all Languagel evel 3 extensions availablein version
3010.

PostScript Language Reference Manual, Second Edition (Reading, MA:
Addison-Wesley, 1991) isthe devel oper’s reference manual for the PostScript
language. It describes the syntax and semantics of the language, the imaging
model, and the effects of the graphical operators.

Statement of Liability

THISPUBLICATION AND THE INFORMATION HEREIN ISFURNISHED
ASIS ISSUBJECT TO CHANGE WITHOUT NOTICE, AND SHOULD NOT
BE CONSTRUED ASA COMMITMENT BY ADOBE SYSTEMS
INCORPORATED. ADOBE SYSTEMSINCORPORATED ASSUMESNO
RESPONSBILITY ORLIABILITY FORANY ERRORSOR
INACCURACIES MAKES NO WARRANTIES OF ANY KIND (EXPRESS
IMPLIED, OR STATUTORY) WITH RESPECT TO THISPUBLICATION,
AND EXPRESSLY DISCLAIMSANY AND ALL WARRANTIES OF
MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSES, AND
NONINFRINGMENT OF THIRD-PARTY RIGHTS

10 October 1997

11

Smooth Shading

Smooth Shading

Overview of Smooth Shading

Smooth shading can be used to accurately describe both monochrome and
color gradient fills (blends) for onscreen display or for printing to a
PostScript printer. A gradient fill issimply asmooth transition from one color
to another color. One of the intentions of smooth shading is to separate the
geometry of the areato be filled (the object) from the geometry of the color
gradient fill or transition (the description of the colorsto be used to create the
gradient fill).

Smooth shading has many uses, including:

 painting oval, circular, or polygonal radial gradient fills.

» painting an object or aregion with agradient fill color.

* rendering gradient fills between objects using Bézier patch meshes.
 rendering three-dimensional objects with triangle meshes.

In previous levels of the PostScript language, a gradient fill was
approximated by alarge series of concentric, filled objects, known as
contours. The geometries and solid-color fill values were interpolated
between first and last objects. This method tended to be very inefficient and
device-dependent, but, with enough contours, it could produce theillusion of
acontinuous gradient fill. The major task for devel opers was to determine the
best number of contours for a particular gradient fill. If the number of
contours chosen was too high, the resulting gradient fill would waste
resources and device memory. If the number of contours was too low, the
resulting output would contain banding; in other words, the gradient fill
would become discontinuous in one or more places of the region to be
shaded.

13

pajelodioou] SWaISAS agopy

Adobe Systems Incorporated

14

Smooth Shading

In Languagelevel 3, smooth shading of objects and regionsisdefined in
terms of a complex paint (gradient fill) that provides smooth transitions
between colors across the painted area(s). The two language extensions for
creating smooth shading are the shfill operator and the Type 2 Pattern
dictionary.

When the object to be painted is arelatively simple shape, or when the
geometry of the object to be painted with a gradient fill is the same as the
geometry of the gradient fill itself, the shfill operator can be used. shfill
accepts asingle operand, which isa Shading dictionary. The Shading
dictionary contains details of the type of shading, the geometry of the area or
object to be shaded, and the geometry of the color gradient fill. In addition,
the Shading dictionary can contain a Function dictionary —whichis
required for some types of shading and optional for others— that defines how
the color or colors varies across the area or object to be shaded.

When the object to be painted is complex — such as acomplex character path
or an imagemask — atype 2 Pattern dictionary can be used. The Pattern
dictionary has a Shading dictionary as one of its elements to define the
shading type used. Additionally, this Shading dictionary may aso have an
associated Function dictionary. Thetype 2 Pattern dictionary can be used as
an argument to the setpattern or setcolor operators; the resulting color can
then be used with thefill, stroke, show, or imagemask operatorsto paint a
path or mask, using a smooth transition between colors across the area or
object to be painted. The number of stepsin thistransition no longer hasto be
specified asit wasin previous levels of the PostScript language.

10 October 1997

There are seven new shading methods that can be described with Shading
dictionaries. They are summarized as follows:

Function-based shading: the color of every point in the domain is defined
by a mathematical or sampled function. This mathematical function does
not necessarily have to be smooth or continuous. Function-based shading
is defined as ShadingType 1.

Axia shading: the color at any one point is created by a gradient fill along
aline (an axis) between two endpoints. The gradient fill can be extended
beyond the endpoints by continuing the colors at the two endpoints. Axial
shading is defined as Shading Type 2.

Radial shading: the color at any one point is created by a gradient fill
between two circles. This shading method is often used to emulate three-
dimensional spheres, cylinders, and cones. Radial shading is defined as
ShadingType 3.

Free-form triangle meshes using Gouraud shading: the color at any one
point is created by an interpolation of the colors of the three vertices of a
triangle in which it is contained using the Gouraued shading method. The
triangles form amesh that defines the area to be shaded. Free-form
triangle mesh shading is defined as ShadingType 4.

L attice-form triangle meshes using Gouraud shading: thisis similar to the
Free-form method. The main difference is that the mesh is generated in a
pseudo-rectangul ar lattice structure. Lattice-form triangle mesh shading is
defined as ShadingType 5.

Coons patch meshes: the color at any one point is created by a bilinear
interpolation of the colors defining the four corner points of the patch.
Each patch is defined by four Bézier curves and contains twelve control
points. Coons patch mesh shading is defined as Shading Type 6.

Tensor Product patch meshes: thisis similar to the Coons Patch Mesh
method. The main differenceis that the patches are defined by 16 control
points instead of 12. Tensor Product patch mesh shading is defined as
ShadingType 7.

1 Smooth Shading 15

pajelodioou] SWaISAS agopy

Adobe Systems Incorporated

1.2 Benefits of Using Smooth Shading

Smooth shading, and its associated Languagel evel 3 extensions, has severd
benefits over older methods of providing gradient fills:

16 Smooth Shading

Smooth shading specifies gradient fills in a device-independent manner.
Thisis achieved by using mathematical functionsto assign color valuesto
each point or pixel in the region to be shaded.

Smooth shading produces smoother gradient fills and higher quality output
on high-resolution screen and printing devices.

The same PostScript code can be used to take full advantage of the
printing qualities and characteristics of every PostScript printer.

Use of smooth shading code can significantly reduce the size of the
resulting PostScript language file.

Smooth shading code will process more quickly on Languagelevel 3
devices than on older devices that use older techniques for shading.

Smooth shading can be used to greatly improve gradient fills on
monochrome screen and printing devices.

Function-based, triangle, and Bézier patch shading (ShadingType 1, 4, 5,
6, and 7) can create gradients that interpolate along two axes. Thisis not
possible with contours.

The use of functions adds a concise representation of complicated
gradients.

Pattern dictionaries can effectively set agradient colorspace to be used for
filling paths.

The setsmoothness and currentsmoothness operators give the

developer and application the power to control the trade-off between
performance and quality of smooth shading.

10 October 1997

2

Figure 1

21

Implementing Smooth Shading

Section 2.1 describesthe shfill operator and how it isused for certain types of
shading (tiling patterns). Sections 2.2 and 2.3 cover the definition of Pattern
dictionaries and how they are used to create smooth shading. Sections 2.4
through 2.12 cover the definition and use of Shading dictionaries, individual
shading types, and their associated mathematical elements. Sections 2.13
through 2.17 cover the Function dictionaries that can be used by Shading
dictionaries to define color transitions for smooth shading. Figure 1 shows
the relationship of these three dictionary types. Finally, Section 2.18
describes the currentsmoothness and setsmoothness operators and how
they might work with the various shading methods.

Hierarchy of dictionaries used for smooth shading

Type 2 Pattern dictionary shfill operator
Shading dictionary Shading dictionary
Function dictionary Function dictionary

Complete descriptions of all the PostScript language extensions for smooth
shading, plus other required language features, can be found in the
Supplement: PostScript Language Reference Manual.

Shfill Operator

The shfill operator can be used to produce a smoothly shaded or varying
gradient fill when the gradient fills themselves are geometric objects (where
the geometry of the object to painted with a gradient fill is similar to or the
same as the geometry of the gradient fill itself). It can also be used for tiling
patterns containing a gradient fill. In other words, shfill can be used for a
repeated pattern of shading. In this particular case, the shfill operator must be
called from within the PaintProc procedure of a Type 1 Pattern dictionary.

The shfill operator takes asinput one Shading dictionary, with an optional
Function subdictionary (See Figure 2). shfill then paints the shape and color
transitions described by the Shading dictionary. This paint processislimited
by, or clipped to, the current clipping region. The current path isignored by
shfill, and no other changes are made to the current graphics state.

2 Implementing Smooth Shading 17

pajelodioou] SWaISAS agopy

All of the geometric coordinates defined in the Shading dictionary are
interpreted relative to the current user space. All color values are interpreted
relative to the ColorSpace key of the Shading dictionary. The Background
key of the Shading dictionary isignored.

Figure 2 Inputsto the shfill operator

Shading dictionary

Function dictionaryj
(optional) Ly shfill

Note The shfill operator should only be used for bounded and/or geometrically-
defined shading; otherwise, the paint could occur across the entire current

clipping region.

Note If the currentfile operator isused as a source for reading large blocks of data
from a PostScript stream, the data should immediately follow the call to the
shfill operator. This approach is the same as for the image operator.

Note The shfill operator can return the following errors. rangecheck and
undefinedresult.

Adobe Systems Incorporated

18 Smooth Shading 10 October 1997

Example 1 Using shfill for smooth shading

Y%AXSHOL. PS

% his is a sinple illustration of Shadi ngType 2 using a
%-uncti onType 2. The shadi ng dictionary is called by shfill
%5et up col or space and other graphics state variables
finch {72 mul} def

% reate an object to shade

gsave % save graphics state

clip %clip to constructed path
newpat h % cl ear out current path

% Defi ne the shading and function dictionaries
<< [/ Shadi ngType 2
/ Col or Space / Devi ceG ay
/Coords [0 O 8.5 inch 11 inch]
%ef i ne the Function
/ Function << /FunctionType 2
% Value is GO +t ** N* (Cl - CO)
/Domain [0 1]

/CO 0 %result for input O = black
/Cl 1 %result for input 1 = white
/N 1 % Exponent = |inear
>>
>>
shfill
grestore
showpage

pajelodioou] SWaISAS agopy

2 Implementing Smooth Shading 19

Adobe Systems Incorporated

Example 2

Note

Smooth Shading

Using shfill in a PaintProc procedure

YPATTYPL. PS

%his exanple illustrates the use of snpboth shading in
%onjunction with a Type 1 pattern to obtain a pattern
%ill whose tiles are snmooth shaded areas.

% ef i ne graphics state and other vari abl es
/inch {72 mul} def% define inch procedure

%efine a shading function dictionary
/[FunctionbDict 10 dict def
Functi onDi ct begin

/ FunctionType 2 def

/Domain [0 1] def

/ CO [0 1 1] def

/Cl [1 0 1] def

/' N 1 def
end

%efine the shading dictionary
/ Shadi nghi ct 10 dict def
Shadi ngbi ct begi n
/ Shadi ngType 2 def
/ Col or Space / Devi ceRGB def
/Coords [0 O 100 100] def
/ Function FunctionDi ct def
end
%Now define the pattern dictionary
/PatternDict 10 dict def
PatternDi ct begin
/ PatternType 1 def
/ Pai nt Type 1 def
/TilingType 1 def
/BBox [0 O 100 100] def
/ XStep 100 def
/ YStep 100 def
/ Pai nt Proc {
begi n
Shadi ngDi ct shfill
end
} def
end
PatternDict [0.255sin 0 0.25 0 0] nakepattern /P1 exch def

/ Ti nes-Bol d findfont 480 scal efont setfont
0.5 inch 6 inch nmoveto (P) Pl setpattern show

showpage
Complete PostScript language files containing these examples accompany
this document.

10 October 1997

2.2

Figure 3

Table 1

Note

2.3

Pattern Dictionaries

Languagel evel 3 includes anew Pattern dictionary with a PatternType 2.
This dictionary can then be used with the makepattern and setpattern
operators to define the complex paints needed for creating gradient fills (See
Figure 3).

Inputs to the makepattern and setpattern operators

Pattern dictionary
Shading dictionary

Function dictionary

g Makepattern — g Setpattern
(optional)

Table 1 shows the keys that define a Pattern dictionary. The keys are
described in more detail, below.

Keys for the PatternType 2 Pattern dictionary

Key Type

PatternType integer required
Shading dictionary required
XUID array optional
Implementation user-defined

The PatternType key is required and must have the value of 2. The Shading
dictionary contains the information describing the desired shading method. It
is described in more detail in Sections 2.4 through 2.12. The XUID key isan
optional array that contains an extended unique ID that identifies the pattern.
The Implementation key is defined by the makepattern operator. The type
and value of this key are implementati on-dependent.

Thereisa new instance of the implicit resource category called PatternType.
This new instance is 2. Currently, the only supported instances of this
category type are 1 and 2.

The keys of the Pattern dictionary are described in more detail in Section
4.4.1 of the Supplement: PostScript Language Reference Manual.

Painting With a Pattern Dictionary

For painting operations using the new PatternType 2 Pattern dictionary, the
Pattern dictionary acts asthe current color in the current graphics state. Once
the pattern is created and set with the makepattern and setpattern operators,
or with the setcolorspace and setcolor operators, thefill, stroke, show, and

2 Implementing Smooth Shading 21

pajelodioou] SWaISAS agopy

Adobe Systems Incorporated

Example 3

Note

Smooth Shading

imagemask operators can then be used with this pattern as the current color
to paint a path or mask with the gradient fill. The pattern coordinate spaceis
obtained in the same way as with PatternType 1 patterns. However, instead
of executing a PatternType 1 PaintProc procedure, the shape and color
transitions described by the Shading dictionary areinterpreted relativeto this
coordinate spaceto create alogical paint with which graphical objects can be
rendered.

Using a PatternType 2 Pattern dictionary for shading

WPATTYP2. PS

% hi s exanpl e denpbnstrates the use of a Type 2 Pattern
%li cti onary for snpoth shadi ng.

%ef i ne vari ous graphics state vari abl es

finch {72 mul} def

%bef i ne sone object to shade

%efine the Pattern dictionary, Shading dictionary, and
%-unction dictionary
gsave
<<
/ PatternType 2
/ Shadi ng <<
/ Shadi ngType 2
/ Col or Space / Devi ceRGB
/ Background [0 1 1]% A Cyan background
/Coords [0 O 8.5 inch 11 inch]
/Domain [0 1]
[Function <<
/ Functi onType 2
/Domain [0 1]
/CO [1 01 % Mgenta
/C1L [011 %Cyan
/N 1
>>
>>
>>
makepattern
setpattern
9%Now perform shade of object by calling a standard
%Post Scri pt rendering operator such as fill or inmage
grestore
showpage
Complete PostScript language files containing these examples accompany
this document.

10 October 1997

Note

Note

Note

24

If the BBox key ispresent in the current Shading dictionary, it isused to clip
thelogical painting region. This region may aso be affected by the geometry
of the shading. All color values are interpreted relative to the ColorSpace
key in the Shading dictionary.

If aBackground color isdefined inthe Shading dictionary, that color is used
first to fill the background of the object or region being painted. Thisis
equivalent to executing afill operation or other painting operation first with
the background color and then again with the gradient fill pattern.

The Background key is provided because the two-step sequence of
operations described above would be verbose, especially for text or the
imagemask operator. The new approach is most beneficial for gradient fill
patterns that do not cover the entire area of the object being rendered.

Some smooth shading methods alow for use of arbitrarily large streams of
data through the DataSource key. Since gradient fills defined by
PatternType 2 pattern resources may be used multiple times, this data must
be provided in areusable form. Data stored in a string is reusable, but the
strings are limited in size to 64 kilobytes (Kb). Data stored in files pointed to
by currentfile or smply in files stored on ahard disk are not reusable. In
order to use data stored as internal or external files, it must be converted into
areusable stream by means of the ReusableStreamDecode filter (see
Section 3.3.7 of the Supplement: PostScript Language Reference Manual).

A non-reusable stream of data from a Shading dictionary may only be used
with the shfill operator. In other words, if a non-reusable stream of data is
needed with the current Shading dictionary, then the shfill operator must be
used instead of a Pattern dictionary to render the object. The only exception
to thisisfor shading with sampled functions (ShadingType 0). In this case,
non-reusable streams cannot be used, even if shfill is used.

PatternType 2 gradient fills do not tile (create a repeated pattern). To create
atiling or repeating pattern containing a gradient fill, use the shfill operator
in the PaintProc procedure of a PatternType 1 pattern resource. See Section
2.1 for more information on the shfill operator.

Shading Dictionaries

A Shading dictionary is used to describe the various smooth shading
methods supported in Languagel evel 3. There are currently seven supported
types of smooth shading, each associated with a specific value of the key
ShadingType. All Shading dictionaries contain the following keys:
ShadingType, ColorSpace, Background, BBox, and AntiAlias. From this
list, only the ShadingType and ColorSpace keys are required in the
Shading dictionary definition. Some types of Shading dictionaries also
include a Function dictionary key (see Sections 2.13 through 2.17). In such

2 Implementing Smooth Shading 23

pajelodioou] SWaISAS agopy

Adobe Systems Incorporated

24

Note

2.5

Smooth Shading

cases, the Shading dictionary usually defines the geometry of the shading,
while the Function dictionary defines the color transitions across that
geometry.

In addition to these keys, a Shading dictionary must have entries specific to
each shading type (the value of the ShadingType key). Table 2 through Table
11 list the keys specific to each of the seven shading types. For complete
descriptions of each key defined for each Shading dictionary, see Section 4.4
of the Supplement: PostScript Language Reference Manual.

A Shading dictionary can be defined within a Pattern dictionary (see
Sections 2.2 and 2.3) or used as the parameter to the shfill operator (see
Section 2.1).

Thereisa new implicit resource category called Shading Type. Currently,
the only supported instances of this category type are 0 through 7,
corresponding to the Shading types discussed in Sections 2.6 through 2.12.

ColorSpace Key for Shading Dictionaries

The ColorSpace key defines not only the color space in which color values
are specified in the shading, but also the color space in which the gradient fill
calculations are performed. The gradient fills between colors defined by most
shadings are implemented using a variety of interpolation algorithms, and
these algorithms are sensitive to the characteristics of the color space. Linear
interpolation, for example, may have observably different resultsif specified
in CMYK color space as opposed to CIE L*a*b* color space, even if the
starting and ending colors are perceptually identical. The difference arises
because the two color spaces are not linear relative to one another. Smooth
shaded objects, paths, or masks are rendered using the following rules:

« |f thevalue of the ColorSpace key is device-dependent and different from
the process color space of the device, then the resulting color values will
be converted to device colors using standard conversion formulae. To
maximize performance, these conversions may take place at any time.
Thus, any shadings defined with device-dependent color spaces may have
color gradient fills that are somewhat device-dependent. This does not
apply to any of the axial and radial shadings, since these perform gradient
fill calculations on asingle variable and then convert to device colors after
the interpolation.

 |f the value of the ColorSpace key is device-independent, then all
gradient fill calculations will occur in the device-independent color space.
Conversion to device colors will occur only after al interpolation
calculations are performed. Thus, the color gradient fills will be device-
independent for the colors generated at each point.

10 October 1997

* |f the value of the ColorSpace key is Separation or DeviceN (See

Sections 3.1, 6.4, 4.2 of the Supplement: PostScript Language Reference
Manual) and the specified colorant(s) is/are not defined by
ProcessColorModel or SeparationColorNames so that the
alternativeSpace key must be used, then the gradient fill calculationswill
be performed in the special color space prior to conversion to the
aternative color space. Thus, non-linear tintTransform functions will be
accommaodated for the best possible representation of the shading method.
If the specified colorant(s) is/are supported, then no color conversion
calculations are needed.

If the value of the ColorSpace key isIndexed (See Section 4.2 of the
Supplement: PostScript Language Reference Manual), then all color
values specified in the shading will be immediately converted to the base
color space. Depending on whether the base color space is device-
dependent or device-independent, gradient fill calculations will be
performed as stated above. Interpolation never occursin the Indexed color
space, which is quantized (discrete steps as opposed to continuous color)
and inappropriate for cal culations that assume a continuous range of
colors. Also, as described for the available ShadingType entries, the
Indexed color space may not be allowed in some shadings (see Sections
2.6 through 2.12). For example, the Indexed color spaceisnot allowed for
axial or radial shadings that perform interpolation calculations on asingle
variable and then convert to parametric colors, which are assumed to
represent a continuous range of colors. Similarly, the Indexed color space
is not allowed for function-based shadings, which interpolate between
sampled color values.

2 Implementing Smooth Shading 25

pajelodioou] SWaISAS agopy

2.6

Table 2

Adobe Systems Incorporated

26 Smooth Shading

ShadingType 1: Function-Based Shading

ShadingType 1 isintended for sophisticated gradient fillsin cases where the
other types of shading — such as axial, radial, triangle mesh, and Coons patch
—are not sufficient. ShadingType 1 specifies function-based shading. In
other shading types, afunction can be used to describe the color transitions
across the geometry of the shading. In this case, the function describes the
shading itself.

Using the ShadingType 1 shading method, the color of every point in the
domain is defined by atwo-dimensional object that uses a mathematical or
sampled function to map each point in the domain to a specific color value.
The mathematical function does not necessarily have to be smooth or
continuous.

Table 2 shows the keys that define a Shading dictionary for ShadingType 1.
The keys are described in more detail below.

Keys for ShadingType 1 Shading dictionaries

Key Type

ShadingType integer required
ColorSpace name or array required
Background array optional
BBox array optional
AntiAlias boolean optional
Domain array optional
Matrix array optional
Function dictionary or array required

The ShadingType key isrequired for every Shading dictionary, regardless
of itstype. It specifies the shading type or method to be used. In this case, the
value must be 1.

The ColorSpace key isalso required for every Shading dictionary,
regardless of its type. The value may be any device-dependent (including
DeviceN), device-independent, or special color space, except Pattern. The
Indexed color space requires some specia handling, as discussed in Section
2.5). All color values for this shading are interpreted relative to the color
space defined by this key.

The Background key isoptional for every Shading dictionary. It isan array
of color components appropriate to the ColorSpace key. It specifiesasingle
color value.

10 October 1997

Note

Note

The BBox key is optional for every Shading dictionary. It isan array of four
numbers interpreted as the lower-left and upper-right coordinates in the
current coordinate space at the time the shading isimaged. If thiskey is
present, then the shading is clipped to the intersection of this bounding box
and the current clipping path. If the key is not present, then the shading is
clipped to the bounding box of the clipping region at the time the shading is
imaged.

The AntiAlias key isoptional for every Shading dictionary. It is a Boolean
value with a default value of false. If true, the shading function, defined by
the key Function, is combined with a convolution function to average
shading values across device pixels. This produces a more device-
independent representation when the spatial frequency of the shading ismore
than about half the device resolution. It also makes shadings more resistant to
variations in appearance due to changesin the current transformation matrix
(CTM).

The implementation of the AntiAlias key is device specific. Some devices may
have a Null implementation, in which case, the key is ignored.

Domain isan optional array of four numbers specifying the rectangul ar
domain of arguments with which the color function(s) are called. The default
domain valueis[0 1 0 1].

Matrix is an optional transformation matrix that specifies the mapping from
the Domain value (see above) into the coordinate space in which the shading
is being imaged. The default matrix is the identity matrix.

The Function key isoptional for ShadingType 1. It specifiesasingle 2-in n-
out Function dictionary or an array of n 2-in 1-out Function dictionaries,
where n isthe number of color componentsin the ColorSpace entry.

The Domain value defined in the Function dictionary must be a superset of
the Domain value of its Shading dictionary. If the values returned by the
function are out of range for the given color component, then the values will
be adjusted to the nearest allow value (clipped).

Any points that are within the region defined by the BBox value but are
outside the Domain value will be left unpainted. However, in the case of
gradient fill patterns with aBackground color specified, such points will be
painted with the background color.

If the function is undefined at any point within its declared Domain value, an

undefinedresult error may occur, even if such points are outside the region
defined by the BBox value.

2 Implementing Smooth Shading 27

pajelodioou] SWaISAS agopy

Example 4 Function-based shading (ShadingType 1)

9%FUNSHO1. PS

%l hi s exanpl e denpnstrates smooth shadi ng using a sanpl ed
% unction and shfill

%Set up graphics state and other variables

finch {72 mul} def

%efine the shading dictionary
gsave
<<
/Domain [0 6.5 inch 0 9 inch]
/Matrix [1 0 0 1 1 inch 1 inch]
/ Shadi ngType 1
/ Col or Space / Devi ceRGB
[Function <<
/ FunctionType O
/Order 1
/Domain [0 1 O 1]
/ Range [01 010 1]
/Decode [0 1 0 1 0 1]
/ Dat aSour ce <
FF 00 00 80 80 00 44 44 00 00 00 CoO
80 CO0 00 FF FF FF FF FF FF FF 00 00
FF FF FF FF FF FF FF FF FF FF 00 FF
80 00 80 00 FF 00 FF FF 00 0 Co 00
>
/ Bi t sPer Sampl e 8
/Size [4 4]
>>
>>
shfill
grestore
showpage

Adobe Systems Incorporated

Note Complete PostScript language files containing these examples accompany
this document.

For acomplete list and description of the keys in the ShadingType 1

Shading dictionary, see Table 4.8 in the Supplement: PostScript Language
Reference Manual.

28 Smooth Shading 10 October 1997

2.7

Table 3

ShadingType 2: Axial Shading

Axial shading is so called because the geometry of the gradient fill is defined
along aline or axis defined by apair of endpoints. It iscalled axia rather than
linear because linear isjust one form of interpolation that can be used to the
define the gradient fill of the shading. Thus, the transition from one color to
another could vary linearly or non-linearly along the line or axis.

ShadingType 2 defines a color gradient fill along aline (axis) between two
endpoints. Thisgradient fill can optionally be extended beyond the endpoints
by continuing the boundary (endpoint) colors. Thisgradient fill is determined
by aone-dimensional interpolation specified by the Function key.

Table 3 shows the keys that define a Shading dictionary for ShadingType 2.
The keys are described in more detail below.

Keys for ShadingType 2 Shading dictionaries

Q.
o
D
Key Type <
: : : n
ShadingType integer required —
: D
ColorSpace name or array required 3
Background array optional n
BBox array optional —
— : -
AntiAlias boolean optional O
Domain array optional O
ﬁ
Extend array optional ®)
Function dictionary or array required 2
Coords array required 'Q_J'_
D
(@R

The ShadingType, ColorSpace, Background, BBox, and AntiAlias keys
are defined as for ShadingType 1.

ShadingType must be 2.

The Coords key isarequired array of four numbers that specify the start and
end coordinate pairs [xg, Yo, X1, Y1l-

The Domain key isan optional array of two numbers. A parametric variablet
is considered to vary linearly between these two values as the gradient fill
varies between the start and endpoints, respectively (from Coords). The
variable t becomes the argument to the color function(s). The default value of
Domain is[0 1].

2 Implementing Smooth Shading 29

Adobe Systems Incorporated

30

Note

Note

Smooth Shading

Extend isan optional array of two Boolean valuesthat specify whether or not
to extend the start and end colors past the start and endpoints, respectively.
The default value for each element of the array is false.

Function isan optional key. It can be either asingle 1-in n-out function
dictionary or an array of n 1-in 1-out function dictionaries, where n isthe
number of componentsin the ColorSpace entry. The Function(s) isare
called with the parameter t defined in Domain (see above).

The Domain value defined in the Function dictionary must be a superset of
the Domain value of its Shading dictionary. If the values returned by the
function are out of range for the given color component, then the values will
be adjusted to the nearest allow value (clipped).

ShadingType 2 defines afield of color that varies along the line between the
start and end coordinates and extends infinitely away from the line. If the
Extend Boolean values are true, the field may aso extend infinitely far along
the line, past either or both endpoints, using the constant color of that
endpoint.

The gradient fill is accomplished by linearly mapping the range between the
endpoints to the value of Domain defined in the Shading dictionary, as
follows. Every point (x,y) is mapped to a coordinate space where (0,0)
corresponds to (X,,Y,) and (1,0) correspondsto (X;,y;)- Since all pointson a
line perpendicular to the line from (0,0) to (1,0) in that space will have the
same color, only the new value of x, called X', needs to be computed in that
space:

X = (%1 - X)) (X~ X0) + (Y1~ Y)Y - Yo)) / (X1 - X0)* + (Y1 -Yo)))

Once X is calculated, the value of the parametric value t can be determined.
Thisvalueis used as the input arguement to the Function key, and the
returned value(s) are used to paint the gradient fill.

This parametric gradient fill may not be used with the value of ColorSpace
set to Indexed.

The value of t is determined as follows:

» |f X < 0and thefirst valuein the Extend array istrue, the parameter t is
set to the value of t,. However, if the first valuein the Extend array is
false, that point is not painted.

» |f X > 1 and the second value in the Extend array istrue, the parameter t
is set to the value of t;. However, if thefirst value in the Extend array is
false, that point is not painted.

e IfO<=x<= l,thent:t0+ (tl'to)xl.

10 October 1997

Example 5

Note

Axial shading (ShadingType 2)

YAXSHO2. PS
%his is a sinple illustration of Shading type 2
%efi ne graphics state and other vari abl es
finch {72 mul} def
gsave
<<%gefi ne the shading dictionary
/ Shadi ngType 2
/ Col or Space / Devi ceRGB
/Coords [3 inch 3 inch 5.5 inch 8 inch]
/ BBox [1 inch 1 inch 7.5 inch 10 i nch]
/ Extend [true fal se] % Extend only one end
/ Functi on
<<
/ Functi onType 2
/Domain [0 1]

/ CO [1 01 %regenta
/C1 [0 1 1] 9%yan
I'N 1
>>

>>

shfill

grestore

showpage

Complete PostScript language files containing these examples accompany
this document.

For acomplete list and description of the keysin the ShadingType 2
Shading dictionary, see Table 4.9 in the Supplement: PostScript Language
Reference Manual.

pajelodioou] SWaISAS agopy

2 Implementing Smooth Shading 31

Adobe Systems Incorporated

2.8 ShadingType 3: Radial Shading

ShadingType 3 defines a color gradient fill between two circles or cylinders.
This method is most commonly used to produce the visual effect of athree-
dimensional sphere or cone. ShadingType 3 is accomplished by one-
dimensional interpolation along the radius of the circle, from the center of the
circle outward. The resulting path can be either circular or elliptical.

Table 4 shows the keys that define a Shading dictionary for ShadingType 3.
The keys are described in more detail below.

Table 4 Keysfor ShadingType 3 Shading dictionaries

Key Type

ShadingType integer required
ColorSpace name or array required
Background array optional
BBox array optional
AntiAlias boolean optional
Domain array optional
Extend array optional
Function dictionary or array required
Coords array required

The ShadingType, ColorSpace, Background, BBox, and AntiAlias keys
are defined as for ShadingType 1.

ShadingType must be 3.

Coords isarequired array of six numbers that specify the center coordinates
and radii of the start and end circles [xq, Yo, o, X1, Y1, I1]. Theradii ry and r;
must be greater than or equal to zero. If oneradiusis zero, that circleis

treated as a point. If both radii are zero, nothing is rendered.

The Domain, Extend, and Function keys are defined exactly the same as
with ShadingType 2 (See Section 2.7).

Smooth Shading 10 October 1997

When using ShadingType 3, the following results can be observed:

* |f the circle with the smaller radiusis extended by the Extend Boolean
value (avalue of true means to shade beyond the endpoint), the interior of
that circle will be painted (shaded) with the constant color of that circle.
That is, the color defined at the radius of the smaller circle will be used.

* If the circle with the larger radius is extended by the Extend Boolean
values, the exterior of that circle will be painted with the constant color of
that circle. The resulting paint (shading) is limited by the value of the
BBox key.

 |f the start and end circles are not concentric and the larger radiusis given
first (specified by Coords), then the resulting gradient fill will depict a
cone pointing out of the page (toward the viewer).

« If, under the same conditions, the smaller radiusis given first (specified by
Coords), then theresulting gradient fill will depict acone pointing into the
page (away from the viewer).

» |f aspherical gradient fill is needed, then the larger circle will entirely
contain the smaller circle.

The gradient fill is accomplished by mapping the region between the start and
end circlesto alinear parametric variable whose domain is the value of the
Domain key. The resulting parametric value is used as the input argument to
the Function key. The returned value(s) from Function is/are used to paint
the gradient fill.

The parametric variables = (t - to) / (t; - to) varieslinearly between 0 and 1 as
t varies across the value of Domain. The parametric equations for the center

and radius of the gradient fill circle moving between the start circle and the
end circle as afunction of sare asfollows:

%) = X + S+ (X1 - %)
Ye(S) = Yo+ s* (Y1- Yo)
r(s)=ro+ s« (ry-ro)
Given ageometric coordinate position (X, y) in or along the gradient fill, the

corresponding value of s can be determined by solving the quadratic
constraint equation:

[x-x(9%+ [y - ye(9* = [r(9)]?

2 Implementing Smooth Shading 33

pajelodioou] SWaISAS agopy

Adobe Systems Incorporated

34

Note

Note

Smooth Shading

Given s, the value of t can be found, which is then passed to the Function
key. The value(s) returned by Function is/are used to determine the color at
the position (X, y). If both roots of the equation are in the domain [0 1], then
the larger value of s defines the color because it comes after the smaller value
and thus overlaysit. For values of s outside the domain [0,1], the Extend
values determine how the shading will be painted. The following rules hold
true for pixel coordinates (x,y) satisfying the above equation.

If the start (first) Extend valueisfalse, then pixels corresponding to values
of s< 0 areleft unpainted or are painted with the Background color, if
oneis specified.

If the end (last) Extend valueis false, then pixels corresponding to values
of s> 1 areleft unpainted or are painted with the Background color, if
oneis specified.

If the start Extend valueistrue and r[s] >= 0, then pixels corresponding
to the values of s < 0 are painted with the start color.

If the end Extend valueistrue and r[s] >= 0, then pixels corresponding to
values of s> 1 are painted with the end color.

For cases where one circleis not completely contained within the other,
Extend values of true can cause painting to extend beyond the areas defined
by the two circles.

This parametric gradient (vignette) may not be used with the value of
ColorSpace set to Indexed color space.

10 October 1997

Example 6 Radial shading (ShadingType 3)

YRADSANP. PS

% his exanple illustrates the use of Shadi ngType 3.
%efine the graphics state and other variabl es
finch {72 mul} def

% Setup up the shading and function dictionaries
gsave
<<
/ Shadi ngType 3
/Coords [3.25inch 3.5inch 3inch 3.25 1.5 add inch 3.5
3.5 add inch 3.25 inch]
/ Col or Space / Devi ceRGB
[Function <<
/ FunctionType 0O
/Order 1
/ Bi t sPer Sanmpl e 16
/Domain [0 1]
/ Decode [0.5 0 1 0.5 0 0.99]
/ Range [01 010 1]
[Size [36]
/ Dat aSour ce <
0000 0000 0000
164F 164F 164F
2C74 2C74 2C74

2C74 2Cr74 2C74
164F 164F 164F
0000 0000 0000
>
>>

>>

shfill

grestore

showpage

pajelodioou] SWaISAS agopy

Note Complete PostScript language files containing these examples accompany
this document.

For a complete list and description of the keys in the ShadingType 3

Shading dictionary, see Table 4.10 in the Supplement: PostScript Language
Reference Manual.

2 Implementing Smooth Shading 35

Adobe Systems Incorporated

36

2.9

Table 5

Note

Smooth Shading

ShadingType 4: Free-Form Gouraud-Shaded Triangle Meshes

ShadingType 4 defines acommon construct used by many three-dimensiona
applications for imaging complex colored and shaded objects. Gouraud-
shaded triangle meshes construct paths composed entirely of triangles. The
color of each vertex of atriangle is specified, and Gouraud interpolation is
used to determine the color of the interior points. A primary use of these
meshes isto allow the specification of polygon vignettes as triangle meshes
with nonlinear interpolation functions.

Table 5 shows the keys that define a Shading dictionary for ShadingType 4.
The keys are described in more detail below.

Keys for ShadingType 4 Shading dictionaries

Key Type

ShadingType integer required
ColorSpace name or array required
Background array optional

BBox array optional

AntiAlias boolean optional
DataSource various required
BitsPerCoordinate integer required (see note)
BitsPerComponent integer required (see note)
BitsPerFlag integer required (see note)
Decode array required (see note)
Function dictionary or array optional

The BitsPerCoordinate, BitsPerComponent, BitsPerFlag, and Decode
keys are required unless the value of DataSource isan array.

The ShadingType, ColorSpace, Background, BBox, and AntiAlias keys
are defined as for ShadingType 1.

ShadingType must be 4.

The BitsPerCoordinate key isrequired unless DataSource is an array. This
integer val ue specifies the number of bits used to represent each vertex
coordinate. The data is decoded based on the value of the Decode key.
Allowed valuesare 1, 2, 4, 8, 12, 16, 24, and 32.

10 October 1997

Note

Note

The BitsPerComponent key isrequired unless DataSource isan array. This
integer value specifies the number of bits used to represent each color
component. The data is decoded based on the value of the Decode key.
Allowed values are 1, 2, 4, 8, 12, and 16.

BitsPerFlag isan integer value that is required unless DataSource isan
array. It specifies the number of bits used to represent the edge flag for each
vertex. Allowed values are 2, 4, and 8; the allowed values for the edgeflag are
0,1, and 2.

The Decode key isrequired unless DataSource isan array. It specifies how
to decode coordinate and color component data into the ranges of values
appropriate for each. The ranges are specified as [Xmin Xmax Ymin Ymax C1.min-

C1,ma>< ----- Cn, min» Cn,max]-

Function isan optional key that specifies either asingle 1-in n-out Function
dictionary or an array of n 1-in one-out Function dictionaries (nisthe
number of componentsin the ColorSpace key). If Function is specified, the
vertex color data for the mesh must be specified by single values rather than
with color tuples. The Function dictionary will then be called with each
interpolated color value to determine the actual color of each vertex.

The Domain value defined in the function dictionary must be a superset of the
Domain value of its Shading dictionary. If DataSourceisan array, inwhich
case Decode is not defined for this Shading dictionary, the Domain value
defined in the function dictionary must be a superset of the domain [0 1]. In
both cases, input values will be clipped to the subset of the function domain.
If the value(s) returned by the function(s) is/are out of range for a given color
component, the value(s) will be adjusted to the nearest allowed value

(clipped).

The Function key may not be used with unencoded vertex data; it may not be
used if the ColorSpace key is set to Indexed.

ShadingType 4, aswell as ShadingType 5, 6, and 7, require asource of data
to define triangle or patch vertices and colors. There are two main ways to
specify the data source, each with varying degrees of complexity and
flexibility. This data source is defined with the DataSource key.

The easiest method for specifying the data sourceiswith an array of numbers
that define the vertices and the color components of those vertices. Using an
array as adata source is conceptually very simple; the other methods of
providing the data allow for much greater flexibility in the way the datais
interpreted.

This other method requires the use of a string or a reusable stream as a data

supply. A string may be appropriate for useif the datais smaller than 64Kbin
length; otherwise, a reusable stream must be used. In either case, the data

2 Implementing Smooth Shading 37

pajelodioou] SWaISAS agopy

Figure 4

Adobe Systems Incorporated

38 Smooth Shading

must be encoded, and there are a variety of methods for specifying the
encoding (bits per value) of vertex data, color data, and flag data. Also, an
optional function may then be used to define the color transitions across the
geometry of the shading. When afunction is used, the Encode and Decode
keys define how the encoded data values are mapped into the domain of the
function.

The DataSource key provides the sequence of vertex data needed to build
each triangle in the mesh.

The data for the it vertex, v;, is of the form
fi X Vi G 1.--Cin

where x and y are vertex coordinates, cisatuple of color values, f isthe edge
flag for each vertex, and n is the number of color components. The edge flag
defines which triangle edges are shared. The number of color components for
each vertex is the same as the number of color components defined for the
current color space, as specified by the ColorSpace key. For example, if the
current color space is RGB, then there must be three color components for
each vertex. If the Shading dictionary contains the Function key, then only
one color component, ¢ 4, is permitted in each sequence of vertex data.

Triangle meshes are built up as follows:

Thefirst vertex, v,, of thefirst triangle must have an edge flag value of 0 (that
is, f, = 0), which meansthat thisis a new triangle (not attached to any
previous triangle). The edge flags of the next two vertices (v, and v;) are
ignored, but they are arequired part of the data. These three vertices define
thefirst triangle, (v, Vi, Vo). Figure 4 shows thisfirst triangle.

Defining a new triangle (f = 0)

fa=0

(Start a new triangle)

Previous
triangle Va

Vp

Subsequent triangles are defined by a single new vertex and an edge that is
shared with the preceding triangle. This edge contains two vertices of the
preceding triangle (see Figure 5). Given triangle (v,, V, V.), where vertex ais

10 October 1997

Figure 5

older than vertex b and vertex b is older than vertex c (older means earlier in
the data source), a new triangle can be formed on side v, or v, creating a
new vertex v, (see Figure 5). If the edge flag f; = 1 (side v,,), the next vertex
formsthetriangle vy, v, v, If the edgeflag f, = 2 (side v,.), the next vertex
formsthetrianglev,, v,, v4 The edge on side v, is assumed to be shared with
the preceding triangle, so is not an appropriate edge for continuing the
triangle mesh.

Whenever the edge flag f = 0, anew triangleis started. At least two more
vertices must be provided, but their edge flags are ignored. Whenever the
edgeflagf= 1or f = 2, anew vertex is added to compl ete the next trianglein
the mesh. An edge flag value f = 3 is not allowed.

The data stream for multiple triangles will look something like this:

f1X1Y1C1,1---C1 n FXY €5 1.-Co y FoX5Y3C3 1--Ca n FaXgYuCa 1---Cy TXsY5C...

where n isthe number of color components. The first three sets of data
(shown with the subscripts 1, 2, and 3) represent the first triangle, and each
additional set of data (subscript 4 and above) represents a new triangle.

How the value of the edge flag determines which edge is used for the next
triangle

pajelodioou] SWaISAS agopy

F=0 f=1
Va
A :
Vi Ve .
V
Vy4 b c
Three new vertices One new
vertex
Ve Vi Vd
f=2
Va Vg
One new
Vp v, vertex

2 Implementing Smooth Shading 39

Adobe Systems Incorporated

It is possible to create complex shapes using triangle meshes by simply
varying the edge at which the next triangle is formed. Figure 6 shows two
very simple examples. To create Mesh 1, start with triangle 1 and create each

new triangle using the following edge flag values:

Table 6 Edge flag values for each trianglein Mesh 1

Triangle

Edge Flag Value

f,=0

fd:]-

fo=2

ff:].

fg=2

fh:].

fi:].

fj=1

Ol | N|OO || D[W[N]|PF

fk:2

[y
o

f|:1

[y
[y

fry = 2

To create Mesh 2, start with triangle 1 and create each new triangle using the

following edge flags:

Table 7 Edge flag values for each triangle in Mesh 2

Triangle

Edge Flag Value

f,=0

fd:]-

fo=1

ff:].

fy=1

1
2
3
4
5
6

fh=l

40 Smooth Shading

10 October 1997

Figure 6

Varying the value of the edge flag to create different shapes

Mesh 2
A va %
Vi =V,
1
6 A 2
Vg Vyg

5 3
Vi Ve

This representation optimizes useful tiling meshes, although it can somewhat
complicate the data representation. The value of DataSource must provide a
whole number of triangles with appropriate vertex edge flags; otherwise, a
rangecheck error will occur. If the mesh contains only afew vertices (less
than about 30; however note that up to 64Kb of datais allowed for arrays),
the vertices may be represented by asimple array of numbers. In this case,
only the ShadingType, ColorSpace, and DataSource keys are required in
the Shading dictionary. If the mesh contains many vertices (more than about
30), the data should be encoded compactly and drawn from a stream. This
encoding is specified by the BitsPerCoordinate, BitsPerComponent,
BitsPerFlag, and Decode keys. Each vertex coordinate pair (x, y) is
expressed in 2 * BitsPerCoordinate bits, each vertex color tuple cis
expressed in n * BitsPerComponent bits, and each vertex edge flag f is
expressed in BitsPerFlag additional bits.

Each set of vertex data (edge flag, coordinate pair, and color tuple) takes an

integer number of bytes; therefore, if the total number of bitsin the vertex
datais not divisible by eight, the vertex data is padded with ignored bits

2 Implementing Smooth Shading 41

pajelodioou] SWaISAS agopy

Adobe Systems Incorporated

42

Note

Smooth Shading

inserted between the coordinate and color data. The coordinate and color data
is decoded based on the Decode array, similar to the decoding done with
image data.

If the Function key valueis specified, then the vertex color data for the mesh
must be specified by single valuest rather than color tuples c. All linear
interpolation within the triangle mesh will be done using the values of t, and
after interpolation, the value(s) returned from Function will be used to
determine the color of each point.

Using free-form Gouraud-shaded triangle meshes differs fromusing an
Indexed color space for the shading. If an Indexed color space is used, the
vertex coordinates are converted to the base color space first, and linear
interpolation occursin that color space. Thus, there is no opportunity to
effect a nonlinear interpolation using an Indexed color space.

10 October 1997

Example 7 Free-form Gouraud-shaded triangle meshes (ShadingType 4)

%Rl TYP4. PS

%rhi s exanpl e denobnstrates Shadi ngType 4
%efi ne graphics state and other vari abl es
finch {72 mul} def

/ Devi ceRGB set col or space

%efine the shading and function dictionaries
gsave
<<
/ Shadi ngType 4
/ Col or Space [/ Devi ceRGB]
/ Dat aSour ce
[
0 %edge flag = newtriangle
00 101 % magent a
0 %dummy edge flag for second edge
4 inch 4 inch 011 %cyan
0 %dummy edge flag for third edge
-4 inch 4 inch 011 %cyan

2 % edge fl ag
-4 inch -4 inch 011 %cyan
2 % edge fl ag
4 inch -4 inch 011 % cyan
2 % edge fl ag
4 inch 4inch 011 % cyan
]

>>

shfill

grestore

showpage

Note Complete PostScript language files containing these examples accompany
this document.

pajelodioou] SWaISAS agopy

For a complete list and description of the keysin the ShadingType 4
Shading dictionary, see Table 4.11 in the Supplement: PostScript Language
Reference Manual.

2 Implementing Smooth Shading 43

2.10
™)
&)
+—
©
S
o
o
S
e
O
j=
7))
&
&)
]
%2 :
> Figure 7
p)
)
O
e
=)
<

44 Smooth Shading

ShadingType 5: Lattice-Form Gouraud-Shaded Triangle Meshes

The ShadingType 5 shading method is almost identical to ShadingType 4,
with afew important exceptions. For ShadingType 4, vertices are specified
in afree-form geometry; for ShadingType 5, vertices must be in a pseudo-
rectangular lattice geometry. That is, the lattice need not be strictly
rectangular, but the set of vertices must be organized into rows. (The rows do
not need to be geometrically linear). In addition, the lattice-form triangle
mesh does not require the use of edge flags but instead defines the number of
vertices in each row of the lattice-form triangle mesh using the
VerticesPerRow key. Finally, the interpretation of the DataSource key is
different (see below).

Given mrows of n vertices, where the number of verticesisgivenin thevaue
of the VerticesPerRow key, triangles are constructed using the following
triplets of vertices:

(Vi Vijen Vien) for 0<=i<=(m-2),0<=j<=(n-2)

(Vi,j+1’ Vi+1,j1 Vi+1,j+1) for 0 <= I <= (m- Z)a 1 <= J <= (n - 1)
Conceptually, the ssimplest possible |attice triangle mesh contains four points
(vertices) in two rows of two vertices, as shown in Figure 7. Also shown in

thisfigure are examples of idea and pseudorectangular lattices.

Smple lattice forms

i i,j+l
i+1,] i+1, j+1
An ideal lattice A pseudorectangular lattice

eV

10 October 1997

Table 8 shows the keys that define a Shading dictionary for ShadingType 5.
The keys are described in more detail, below.

Table 8 Keysfor ShadingType 5 Shading dictionaries

Key Type

ShadingType integer required
ColorSpace name or array required
Background array optional

BBox array optional

AntiAlias boolean optional
DataSource various required
BitsPerCoordinate integer required (see note)
BitsPerComponent integer required (see note)
Decode array required (see note)
VerticesPerRow integer required

Function dictionary or array optional

Note The BitsPerCoordinate, BitsPerComponent, and Decode keysarerequired
unless the value of DataSource isan array.

The ShadingType, ColorSpace, Background, BBox, and AntiAlias keys
are defined as for ShadingType 1.

ShadingType must be 5.

The BitsPerCoordinate, BitsPerComponent, Decode, and Function keys
are al defined asfor ShadingType 4 (See Section 2.9).

DataSource isarequired key that provides a sequence of vertex coordinate
and color data that specifies the L attice-form triangle mesh. It can be an array
of numbers, a string, or a stream (see the previous discussion for
ShadingType 4).

The data stream for multiple row of triangles will look something like this:
X1Y1C1,1:+-C1,n XY 2C2,1:+-C2,n X3Y3C3,1:+-C3,n X4Y4C4,1-+-Co, - XYLy 1-+-Cyin

X1Y1C1,1--:C1,n XY L2 1---C2,n X3Y3C3,1:+-C3 n XaY4C4,1--C4 -« XYLy, 1---Cyn

where n is the number of color components per vertex and v is the number of
vertices per row.

2 Implementing Smooth Shading 45

pajelodioou] SWaISAS agopy

Example 8
©
()
'
©
—
e
o
-
@)
@)
=
0
&
()
'
(7))
>
p]
8 Note
@)
©
<

46 Smooth Shading

VerticesPerRow is arequired integer value that defines the number of
vertices in each row of the mesh. Although the number of vertices per row
must be specified in VerticesPerRow, the number of rows does not need to
be specified in the Shading dictionary.

Lattice-form Gouraud-shaded triangle meshes (ShadingType 5)

% ATTI CE1. PS

% his exanple illustrates lattice triangle mesh shadi ng
%usi ngt he si npl est possi bl e exanplewithjust twotriangles.
%efi ne graphics state and ot her variabl es

linch {72 mul} def

/ Devi ceRGB set col or space

%efine the shading dictionary
<<

/ Shadi ngType 5

/ Col or Space / Devi ceRGB

/ VerticesPer Row 2

/ Dat aSour ce |

1 inch 1 inch 101 %hgenta at bottom | eft
7 inch 1 inch 011 % yan at bottomright
2 inch 10 inch 011 9% yan at top left
8 inch 10 inch 101 %mgenta at top right
]
>> shfill
showpage

Complete PostScript language files containing these examples accompany
this document.

For a complete list and description of the keysin the ShadingType 5

Shading dictionary, see Table 4.12 in the Supplement: PostScript Language
Reference Manual.

10 October 1997

2.11

Figure 8

ShadingType 6: Coons patch meshes

The ShadingType 6 shading method is used to construct one or more color
patches, each bounded by four Bézier curves, that comprise what isknown as
a Coons patch. A primary use of this patch shading method isto allow the
specification of conical vignettes and other complex gradient fills as patch
meshes with nonlinear interpolation functions. A Coons patch is defined by
12 control points: four vertices plus eight Bézier control points, two for each
side of the patch. The color at any one point in the patch is determined by
interpolating the colors of the corner points.

A Coons patch generally has two independent aspects, a color specification
and a coordinate mapping. These two aspects are defined as follows:

» Colorsare specified for each of the corners of the unit square, and bilinear
interpolation is used to fill in colors over the entire unit square.

» Coordinates are mapped from the unit square onto a four-sided patch
whose sides are not necessarily linear. The mapping is continuous; the
corners of the unit square map to corners of the patch, and the sides of the
unit square map to sides of the patch (see Figure 8).

Coordinate mapping from a unit square to a four-sided patch

Thus, ShadingType 6 shading results from coloring the unit square and then
mapping it.

A bicubic Coons patch maps the unit square to aregion that is bounded by
four Bézier curves, ¢, C,, d;, and d,.

2 Implementing Smooth Shading 47

pajelodioou] SWaISAS agopy

Adobe Systems Incorporated

The mathematics that describe this mapping are outlined below (refer to
Figure 8 above):

Two surfaces can be described that are linear interpolations over a pair of
boundary curves. Along the u axis, the surface S is described with

SU, V) = (1-V) * ¢(U) + (V) * Cp(U)

Along thev axis, the surface S, is described with

Su(uv) = (1 - 1) * dy(v) + (u) * dy(v)
The four corners of the Coons patch are described with

€1(0) = dy(0), ¢1(1) = dx(0), cx(0) = dy(1), and cx(1) = dp(1).
A third surface is the bilinear interpolation of the four corners

Sp(uv) = (1-V) * [(1-U) * ¢3(0) + (u) x c1(2)]
+ (V) * [(1-u) x c(0) + (u) x cx(1)]

The coordinate-mapping for the shading is defined as the surface
S=§8+&-5

This defines the geometry of each Coons patch. A Coons patch meshis
constructed from a sequence of one or more such colored or shaded patches.

It is sometimes possible for a patch to appear to fold over onitself (see Figure
9). For example, aboundary curve can be self-intersecting. In this case, afold
over would occurs as follows:

Consider the above description of amapping from u,v parameter space to the
patch in device space. Asthe value of u or vincreases in parameter space, the
location of the pixelsin device space may change direction so that pixels are
mapped onto previously mapped pixels. If more than one parameter space
location (u,v) is mapped to the same |ocation in device space, the value of
(u,v) selected will be the one with the largest value of v, and if multiple (u,v)
values have the same v, the one with the largest value of u will be chosen.

Smooth Shading 10 October 1997

Figure 9 Patch appearance, painted area, and boundary

Appearance Painted area Patch boundary

Note Apatchisa control surface rather than a painting geometry. The outline of a
projected square may not be the same as the boundary of a patch.

If amesh contains several patches and if some portions of one patch overlap
portions of another patch, then later patches will paint over earlier patches
(earlier and later refer to the order of appearance of the patchesin the
DataSource entry, which is described below).

Table 9 shows the keys that define a Shading dictionary for ShadingType 6.

Table 9 Keysfor ShadingType 6 Shading dictionaries

Key Type

ShadingType integer required
ColorSpace name or array required
Background array optional

BBox array optional

AntiAlias boolean optional
DataSource various required
BitsPerCoordinate integer required (see note)
BitsPerComponent integer required (see note)
BitsPerFlag integer required (see note)
Decode array required (see note)
Function dictionary or array optional

Note The BitsPerCoordinate, BitsPerComponent, BitsPerFlag, and Decode
keys are required unless the value of DataSource isan array.

2 Implementing Smooth Shading 49

pajelodioou] SWaISAS agopy

Adobe Systems Incorporated

Figure 10

50 Smooth Shading

The ShadingType, ColorSpace, Background, BBox, and AntiAlias keys
are defined as for ShadingType 1.

ShadingType must be 6.

The BitsPerComponent, Decode, and Function keys are all defined as for
ShadingType 4.

BitsPerCoordinate isan integer value that is required unless DataSource is
an array. It specifies the number of bits used to represent each geometric
coordinate. The datais decoded based on the value of Decode. The allowed
valuesare 1, 2, 4, 8, 12, 16, 24, and 32.

BitsPerFlag isan integer value that is required unless DataSource isan
array. It specifies the number of bits used to represent the edge flag for each
patch. The allowed values are 2, 4, and 8, but only the least significant two
bitsin each flag value are used; the allowed values for the edge flag are 0, 1,
2,and 3.

The DataSource key provides a sequence of geometric coordinate and color
component values (patch vertex/mesh data). It can be in the form of an array
of numbers, astring, or a stream (see the earlier discussion for ShadingType
4). If the total number of bits used to represent the patch datais not divisible
by eight, the patch datais padded with ignored bitsinserted between the color
data and the start of the next set of patch vertex data.

Thisdataisinterpreted similarly to, and has similar constraints as, the
ShadingType 4 and 5 triangle meshes, except that all of the coordinate pairs
for each patch are provided first, followed by its color tuples (with the
triangle meshes, the color datais supplied with each vertex). These color
values are specified for the corners of the patch in the same order as the
control points corresponding to the corners. Thus, ¢, isthe color at (X4, ¥), Co
isthecolor at (X4 Y,), czisthecolor at (x5, y;), and c,isthe color at (X109, Y10)s
as shown in Figure 10.

Color values and edge flags in Coons patch meshes

Use this side when f =3

This side already
attached to previous
patch.

Start a new patch
iff=0

Use this side
when f =2

Use this sidewhen f =1

10 October 1997

The i patch in the data stream is represented by

fiX1Y1 X2y X12Y12,C1 €2 C3Cy

wheref;isthe edge flag for the patch, al of the xy values are the control point
coordinates, and the ¢ values are the colors at the four corners of the patch.

The above figure a so shows how the edge flag values (f= 0,f=1,f=2,f=
3) correspond to the coordinates that describe the sides of the patch. For each
edge flag value, one edge from the previous patch is used as thefirst edge for
the next patch., with the coordinates being traversed in the same direction.
This arrangement improves the efficiency of the representation for meshes
but complicates the data representation and stream compression, as with the
triangle meshes. Therefore, since each new patch shares one edge from the
previous patch, only the control points and colors defining the remaining
three edges must be specified in the data stream. For each new patch other
than thefirst, only eight control points and two corner colors must be
specified:

fir X2y 1XoY 2. XgYg C1 C

The edgeflag, f, of thefirst patch must have avalue of 0, which means start a
new patch. The twelve control pointsfor this patch, X;y; XoYs...X;5Y 12, SPECiTy
the Bézier curves that define the boundary curves of the patch. c; ¢, c5 ¢y
represents a sequence of 4 * n color values, where n is the number of color
components specified by ColorSpace. The edge flag for each subsequent
patch can be 1, 2, or 3, depending on the desired position of the patch.

2 Implementing Smooth Shading 51

pajelodioou] SWaISAS agopy

Adobe Systems Incorporated

52

Table 10

Smooth Shading

Table 10 lists the coordinates that define each adjacent patch. Figure 11
shows the adjacent patches.

Coordinates for adjacent patches

Edge Flag

Next Set of Vertices

f=0

X1Y1X2Y2X3Y3X4Y 4X5Y5X6Y6X7Y7X8Y8XaY9X10Y10X11Y11X12Y12

C1C2C3Cyq

X5Y5X6Y6X7Y7X8Y8XgYoX10Y10X11Y11X12Y12
C3Cy

Implicit Values:

X1Y1 = X4Y4 (Of the previous patch)
Cq = C, (of the previous patch)
XoY» = XsYs (Of the previous patch)
C, = c3 (of the previous patch)
X3Y3 = XgYe (Of the previous patch)
XaY4 = X7y7 (Of the previous patch)

X5Y5X6Y6X7Y7X8Y8XoY9X10Y10X11Y11X12Y12
C3Cy

Implicit Values:

X1Y1 = X7Yy7 (of the previous patch)
€y = c3 (of the previous patch)

Xo¥» = XgYg (Of the previous patch)
C, = ¢4 (of the previous patch)

X3Y3 = XgYg (Of the previous patch)
XaYa = X10Y10 (Of the previous patch)

X5Y5X6Y6X7Y7X8Y8XoYoX10Y10X11Y11X12Y12
C3Cy

Implicit Values:

X1Y1 = X10Y10 (Of the previous patch)
€1 = ¢4 (of the previous patch)

XoY» = X11Y11 (Of the previous patch)
C, = ¢4 (of the previous patch)

X3Y3 = X12Y12 (Of the previous patch)
X4Y4 = X1Y1 (of the previous patch)

10 October 1997

Figure 11

Note

Note

Note

How the value of edge flag, f, determines the edge for the next patch

When fg =0
start a new patch

The data for at |east one complete patch must be specified in DataSource.

Degenerate Bézier curves are allowed and are useful for certain graphical
effects. For example, a quadrant of a circle can be described by a Coons
patch with one degenerate side.

If the Function key value is specified, then the vertex color datafor the mesh
must be specified by single valuest, rather than color tuples c. All linear
interpolation within the triangle mesh will be done using the values of t, and
after interpolation, the value(s) that is/are returned from Function will beto
determine the color of each point.

Using ShadingType 6 differsfrom using an Indexed color space for the
shading. If an Indexed color space is used, the vertex coordinates are
converted to the base color spacefirst, and linear interpolation occursin that
color space. Thus, thereis no opportunity to effect a nonlinear interpolation
using an /ndexed color space.

2 Implementing Smooth Shading 53

pajelodioou] SWaISAS agopy

Adobe Systems Incorporated

54

Example 9

Note

Smooth Shading

Coons patch meshes (ShadingType 6)

%CONI CAL. PS

% his exanple illustrates Shadi ngType 6 and the use of

% our Coons patches to create a “conical blend”.

%befine graphics state and other vari abl es

finch {72 mul} def

%efine the variables CX, CY, R R3, R6, C, X3, X6, Y3, Y6
%efine startcol or, mdcolor, and endcol or

% Defi ne the shading and function dictionaries
gsave
<<

/ Shadi ngType 6

/ Col or Space / Devi ceRCGB

/ Dat aSour ce

[
% patch 1 data

% patch 2 data
% patch 3 data

% patch 4 data

]

>>
shfill
grestore
showpage

Complete PostScript language files containing these exampl es accompany
this document.

For a complete list and description of the keys in the ShadingType 6

Shading dictionary, see Table 4.13 in the Supplement: PostScript Language
Reference Manual.

10 October 1997

2.12 ShadingType 7: Tensor Product Patch Meshes

The ShadingType 7 shading method is almost identical to ShadingType 6,
except that instead of using a bicubic Coons patch defined by twelve control
points, a bicubic tensor product patch defined by sixteen control pointsis
used. The extra control points allow for more control of the color
interpolation across the patch. Each set of twelve coordinate pairsin the
DataSource key (see below) is replaced by a set of sixteen coordinate pairs.

As with the Coons patch surface, the tensor product surfaceis defined by a
mathematical mapping from a square patch (u,v) to the patch coordinate
system (x, y).

Thisis described as follows:
3 3

Sy, v) = Z Z Pij x Bi(u) x Bj(v)
i=0j=0

Pij isthe control point for thei,j row and column of the tensor.

Since each Pij = (Xij, Yij), the surface can also be expressed as

3 3

x(u,v) = Z Z Xij x Bi(u) x Bj(v)
i=0j=0
3 3

yuv) = % % YijxBi(u) x Bj(v)
i=0j=0

Bi(u) and Bj(v) are Bernstein polynomials, where
BO(t) = (1-1)°

B1(t) = 3t(1—t)?

B2(t) = 3t3(1-1)

B3(t) = t°

The control points Pij are defined as follows:

POO PO1 P02 P03
P10 P11 P12 P13
P20 P21 P22 P23
P30 P31 P32 P33

2 Implementing Smooth Shading 55

pajelodioou] SWaISAS agopy

Adobe Systems Incorporated

Figure 12

Smooth Shading

Thisis shown graphically in Figure 12.

Pij control points

Thisisaconvenient numbering scheme for the mathematical description, but
a better numbering scheme for the language is as follows:

0 11 10 9
1 12 15 8
2 13 14 7
3 4 5 6

This allows the Coons patch numbering to be a subset of the Tensor Product
patch numbering.

The tensor product patch mapping, like the Coons patch mapping, is
controlled by the location and shape of the four boundary curves. Unlike the
Coons patch, however, the tensor product patch has four more internal
control points to adjust the mapping. Each control point follows a trgjectory
defined by the four control points along arow or a column. Each row or
column of control points definesits own cubic Bézier curve, and thisisthe
trajectory each of the control points of the moving curve take. The tensor
product patch gives more control over mapping than does the Coons patch.
However, the Coons patch is easier to use and more concise because the
internal control points areimplicitly specified by the boundary control points.

10 October 1997

Table 11

Note The BitsPerCoordinate, BitsPerComponent, BitsPerFlag, and Decode

Table 11 shows the keys that define a Shading dictionary for ShadingType

7. The keys are described in more detail, below.

Keys for ShadingType 7 Shading dictionaries

Key Type

ShadingType integer required
ColorSpace name or array required
Background array optional

BBox array optional

AntiAlias boolean optional
DataSource various required
BitsPerCoordinate integer required (see note)
BitsPerComponent integer required (see note)
BitsPerFlag integer required (see note)
Decode array required (see note)
Function dictionary or array optional

keys are required unless the value of DataSource isan array.

All of the keys are defined as for ShadingType 6. ShadingType must be 7.
The only difference isthat each set of 12 coordinate pairsin the DataSource

key isreplaced with a set of 16 coordinate pairs.

See the earlier discussion of DataSource for ShadingType 4 and 6.

2 Implementing Smooth Shading

57

pajelodioou] SWaISAS agopy

Adobe Systems Incorporated

58

Example 10

Note

Smooth Shading

Tensor Product patch meshes (ShadingType 7)

YENSOR. PS

%rhi s exanpl e denpbnstrates snooth shadi ng usi ng Tensor
% at ches.

%bef i ne graphics state and other vari abl es.

/ Devi ceRGB set col or space

finch {72 mul} def

%efine the variables LowerlLeft, CP01, CP02, LowerRi ght,
%CP03, CP04, Upper Ri ght, CP0O5, CP06, UpperlLeft, CPO7, CPO8
<<
/ Shadi ngType 7
/ Col or Space / Devi ceRGB
/ Dat aSour ce [
0%tart a new patch
Lower Left CPO1 CPO2
Lower Ri ght CP03 CP04
Upper Ri ght CP0O5 CP0O6
Upper Left CPO7 CPO8
Lower Left 3 {2 copy} repeat
0110.5010.7500110.5
]

>> shfill

showpage

Complete PostScript language files containing these exampl es accompany
this document.

10 October 1997

2.13

Note

Functions

Function objects are tightly associated with smooth shading, since functions
may be used to provide close control over the shape of the color transitions
across the geometry of the shading.

Functions may be thought of as“mtin, n-out” numerical transformations.
Each function dictionary implicitly declares the sizes of mand n, and
explicitly declares adomain of input values for which the function is defined
and arange (of output values outside of which no result value will fall).
Domain and range intervals must be bounded and rectangular in the input or
output space of the function. They are assumed to be closed in the
mathematical sense; that is, the edges of the interval areincluded in the
interval, asin [0,1]. The function must be defined (but not necessarily
continuous or smooth) across its entire domain. If afunction is called with
input values outside the declared domain, the inputs will be clipped to that
domain. If any input in the declared domain of the function would cause the
function to output a value outside the declared range, that output value is
clipped to that range.

Each Shading dictionary that uses afunction object must specify how it uses
the function and how it maps the Shading domain into the domain of the
function. If the output of the function is modified by the Shading dictionary
before use, this modification must also be specified. Shading dictionaries
that use functions must note that the declared domain of the function may be
smaller than the actual domain of the function, and the declared range may be
larger than the actual range of the function. Because of this, it isusualy
necessary to selectively specify the function so that its domain and range are
appropriate for use in the Shading dictionary.

Three types of functions are supported in LanguagelLevel 3. They are as
follows:

» Sampled functions: these are the most general type of function. The
mapping from input to output is controlled via a sample table that can be
used to approximate any desired mathematical function. Sampled
functions have been used to approximate logarithmic, sinusoidal, and
Gaussian functions, to name just afew.

» Exponential interpolation functions: these are conceptually the simplest
type of function. These can be used wherever asimple linear or
exponential gradient fill isrequired.

 Stitching functions: these are used to stitch or join together the output of
two or more other types of functions.

Functions with high spatial frequency (or discontinuous) color transitions
may display aliasing effects when imaged at low effective resolutions.

2 Implementing Smooth Shading 59

pajelodioou] SWaISAS agopy

2.14 Function Dictionaries

Each class of aFunction dictionary has a FunctionType key whose value
specifies the representation of the function, a set of keysthat parameterize the
representation, and additional data needed by that representation.

All Function dictionaries share the following keys: FunctionType, Domain,
and Range. FunctionType and Domain are required for all Function
dictionaries. The Range key isrequired only for FunctionType O Function
dictionaries.

In addition, each type of Function dictionary must include keys appropriate,
or unigue, to the function type. The output dimensionality (range) of a
function can usually be deduced from other keys of the function; if not, the
Range key isrequired. The dimensionality of the function inferred from the
Domain and Range declarations must be consistent with the dimensionality
inferred from other keys of the function.

The Domain value of aFunction dictionary must be a superset of the
Domain value of its associated Shading dictionary.

Each of the three Function types are supported within all Shading
dictionaries with the following exception: ShadingType 1 dictionaries only
support FunctionType O Function dictionaries.

Note Thereisa new implicit resource category called FunctionType. Currently,
the only supported instances of this category type are 0, 2, and 3,
corresponding to the Function types discussed in Section 2.13 through 2.17.

For acomplete list and description of the keysin Function dictionaries, see
Table 3.14 in the Supplement: PostScript Language Reference Manual.

Adobe Systems Incorporated

2.15 FunctionType 0: Sampled Functions

Sampled functions use a sequence of sample values to provide an
approximation for functions whose domains and ranges are bounded. The
samples are organized in atable or array. The dimensionality of the sample
table or array is equal to the dimensionality of the input domain. Samples
may have more than one component. The number of componentsin each
sampleis equal to the dimensionality of the output range.

Sampled functions are highly general and offer reasonably accurate
representations of arbitrary analytic functions at alow expense. For example,
asingle-input (m equal to 1) sinusoidal function can be represented over the
range [0 180] with an average error of only 1%, using just ten samples and
linear interpolation (Order equals 1). Two-input functions will take

60 Smooth Shading 10 October 1997

Note

Table 12

significantly more samples, but usually not a prohibitive number, aslong as
the function does not have high-frequency variations (when the sample
values vary greatly over different locations).

The dimensionality of a sampled function is restricted only by
implementation limits. However, the number of samples required to represent
high-dimensionality functions multiplies very rapidly unless the sampling
resolution is very low; aso note that the process of multilinear interpolation
becomes computationally intensiveif the input dimensionality is greater than
two. The multidimensiona spline interpolation is even more computationally
intensive.

Functions are assumed to be reusable; therefore, the internal representation
of a sampled function must fit entirely within system memory, or a VMerror
will occur. Thislimit is dependent on the amount of available system memory.

Table 12 shows the keys that define aFunction dictionary for FunctionType
0. The keys are described in more detail below.

Keys for FunctionType O Function dictionaries

Key Type

FunctionType integer required
Domain array required
Range array optional
Order integer optional
DataSource various required
BitsPerSample integer required
Encode array optional
Decode array optional
Size array required

The FunctionType, Domain, and Range keys are common to all three
Function types. FunctionType and Domain are required keys. Rangeis
required for FunctionType 0, only.

FunctionType in an integer value specifying the Function type, whichis, in
this case, 0.

Domain isan array of numbers, interpreted in pairs. Each pair of numbers

defines the domain of one input value. The smaller bound must precede the
larger bound in each pair. The size of the array implicitly defines the input

2 Implementing Smooth Shading 61

pajelodioou] SWaISAS agopy

Adobe Systems Incorporated

Figure 13

62 Smooth Shading

dimensionality m of an m-in n-out function; thisis true because m represents
one-half of the number of elementsin the array. Input values that are outside
the declared domain are clipped to the nearest boundary value.

The Range key specifies an array of numbersthat are also interpreted in
pairs. Each pair defines the range of one output value. The smaller bound
must precede the larger bound in each pair. The size of the array implicitly
defines the output dimensionality n of an m-in n-out function; n represents
one-half of the number of elementsin the array. Output values are clipped to
the defined range. If the range is not defined, no clipping will be performed.

Order isan optional integer value that specifies the order of interpolation
between samples. The value 1, which is the default value, specifies alinear
interpolation. The value 3 specifies a cubic spline interpolation.

DataSource isarequired key that may be a string or areusable stream. It
provides the sequence of sample values that specifies the function. If the
amount of sampled datais greater than 64Kb, areusable stream must be used
(See Section 3.3.7 of the Supplement: PostScript Language Reference
Manual).

The BitsPerSample key isarequired integer value that specifies the number
of bits used to represent each sample value. Thevaluesare 1, 2, 4, 8, 12, 16,
24, and 32.

Encode isan optional array that specifies the linear mapping of input values
into the domain of the sample table for the function. The default value isas
follows: [0 (Sizeg - 1)...].

Decode is an optional array that specifies the linear mapping of sample
valuesinto the range of values appropriate for the output variables of the
function. The default value is the same as for Range.

Mapping input values to function results (output values)

input value

maps into

Sample Table
“mapsino ™ | (DataSource)

interpolated values
out to

—mapsto > function result(s)

Size isarequired array that specifies the number of samplesin each input
dimension of the sample table.

10 October 1997

The Domain, Encode, and Size keys determine how the input variable
values of the function will be mapped into the sample table. For example, if
the Domain is[-1 1 -1 1] and the Size is[21 31], the default Encode is

[0 20 0 30], which maps the entire Domain into the full set of sample table
entries. Other values of Encode may be used.

In general, for the it" input variable d,, the corresponding encoded value g, is
(E2i +17 E2i)

o P B,)

+Ey

where D; and E; are elements of the Domain and Encode arrays, respectively.
If aresultant encoded value g falls outside the domain [0, Size, - 1], the value
is clipped to the nearest allowed value. The encoded input values are real
numbers, not restricted to integers, and multi-variable interpolation is used to
determine an output value from the surrounding nearest-match sample table

values.

Similarly, the Range, Decode, and BitsPerSample keys determine how the
sample values of the function are mapped into output values. Thisis
essentialy identical to the way image sample values are decoded. The value
of BitsPerSample impliesthat all sample values must be in the range

[0 (2BisPersample . 1)] Thisrangeis linearly transformed by the Decode array
to an output range. The default Decode array is equal to the Range array,
indicating a mapping of the entire possible sample range into the entire
possible output range. Other values of Decode may be used.

In general, for the i"" sample component s, the corresponding output valuer;,

(Dyie1-Dy)
=5 Bitlile:.slample2I *+Dyi
(2 -1)

where D; are elements of the Decode array.

As was mentioned previoudy, samples are encoded and interpreted similarly
to image samples, except that function sample datafor a new row must
continue to be packed with the previous row and need not necessarily start on
abyte boundary. No row padding is done with sampled function data. Aswith
image data, a sequence of samplesis considered to represent an array in
which the first dimension of the array varies fastest; that is, in atwo-
dimensional array of data, the x component varies faster than the y
component.

Consider the same sampled function with 4-bit samplesin an array
containing 21 columns and 31 rows, and consider using this function to
represent a halftone spot function. A spot function takes two arguments, x and
y, inthedomain [-1 1], and returns one value, z, intherange[-1 1]. In the
Function dictionary, the value of Domain would be[-1 1 -1 1], the value of
Size would be [21 31], and the value of Encode would be[0 20 0 30]. The

2 Implementing Smooth Shading 63

pajelodioou] SWaISAS agopy

Adobe Systems Incorporated

Smooth Shading

value of BitsPerSample would be 4, the value of Range would be[-1 1], and
the value of Decode would be[-1 1]. The x argument would be linearly
transformed by the encoding to the domain [0 20] and the y argument to the
domain [0 30]. Using bilinear interpolation between sample points, the
function computes a value for z, which will be in the range [0 15], and the
decoding transforms z to a number in the range [-1 1] for the result. The
sample array is stored in a stream of

326 bytes = [31 rows * 21 samples/row * 4 bits/sample/ 8 bits/byte] .

Thefirst byte contains the sample for the point (-1, -1) in the high-order 4 bits
of the byte and the samplefor the point (-0.9, -1) in the low-order 4 bits of the
byte.

The Encode key gives the linear mapping between the keys Decode and
Size. The default value of Encode isS[0 (s,- 1) 0 (s; - 1)], where 5 istheith
valuein the Size array. A non-default encoding can be specified, but the
beginning and ending points for the encoding must be contained between 0
and (s; - 1).

The Decode key may be used to increase the accuracy of encoded samples
corresponding to certain valuesin the range. For example, if the desired range
of the function is[-1 1] and the value of BitsPerSample is 4, the usual value
of Decode would be[-1 1], and the sample values would be integersin the
interval [0 15]. But if these values are used, the midpoint of the range of the
function (0) would not be represented exactly by any sample value, since it
would fall halfway between 7 and 8. Instead, one could use a Decode array
of [-1 +1.1428571] and sample valuesin the interval [0 14]. In thisway, the
desired effective range of [-1 1] would be achieved, and the range value 0
would be precisely represented by the sample value 7. This example is
illustrated in Figure 14.

The value of the Size of an input dimension can be 1, in which case all input
valuesin that dimension will be mapped to the single allowed value. If the
Size of aninput dimension is less than 4, cubic spline interpolation is not
possible, soif Order 3 is specified, it isignored.

10 October 1997

Figure 14

Example 11

Note

Mapping with the Decode Array

/Decode [1 1]

1
S
§ 0

samples

-1

+1 /Decode [-1 1.1429]
o .
= 0

samples

Sampled function (FunctionType 0)

Y%AXSHLOG. PS
<<
/ FunctionType 0O
/[Order 1
/ Bi t sPer Sanpl e 16
/ Dat aSour ce
< 0000 0000 0000
4D10 4D10 4D10

FA48 F448 F448
FFFF FFFF FFFF >
/Domain [0 1]
/Decode [1 0 011 0.5]
/ Range [01 010 1]
[Size [10]
>>

Complete PostScript language files containing these examples accompany
this document.

For acomplete list and description of the keys in the FunctionType 0

Function dictionary, see Table 3.15 in the Supplement: PostScript Language
Reference Manual.

2 Implementing Smooth Shading 65

pajelodioou] SWaISAS agopy

Adobe Systems Incorporated

2.16

Table 13

Smooth Shading

FunctionType 2: Exponential Interpolation Function

Exponentia interpolation is conceptually the ssmplest function type of the
three types supported in Languagel evel 3. FunctionType 2 functions are
aways 1-in (mequals 1), n-out, defining an exponentia interpolation in one
variable. In the ssimplest case, with the exponent equal to one, the function
defines alinear interpolation over its input domain.

Table 13 shows the keys that define aFunction dictionary for FunctionType
2. The keys are described in more detail, below.

Keys for FunctionType 2 Function dictionaries

Key Type

FunctionType integer required
Domain array required
Range array optional
Co number or array optional
C1 number of array optional
N number required

The FunctionType, Domain, and Range keys are defined as for
FunctionType 0.

FunctionType must be 2.

The mapping of the input value of the function to its output value(s) is
determined by the three keys C0, C1, and N.

The CO key is an optional number or array that defines the function result
(output value) for aninput value of 0. It must bethe same sizeasC1. Thesize
of the function is n-out, where nisthe size of the array. The default value is 0.

The C1 key is an optional number array that defines the function result
(output value) for an input value of 1. It must be the same size as C0. The
default valueis 1.

N is arequired number that defines the interpolation exponent (to which the
input variable israised). Each input valuet to the function will return the
value specified by

o+ tN(c;s- o)

Values of Domain must constrain t such that, if N isnot an integer, al values
of t must be greater than or equal to zero, and if N is negative, no value of t
may be zero.

10 October 1997

Example 12

Note

2.17

For typical use as an exponential interpolation function, the value of Domain
will be declared as [0 1], and the value of N will be a number greater than O.
The Range key may be used to clip the output to adesired range.

Exponential Interpolation function (FunctionType 2)

Y%AXSHOL. PS

<<
/ FunctionType 2
/Domain [0 1]

/ Q0 0 %result for input 0 = black
/Cl 1 %result for input 1 = white
/' N 1 % Exponent = |inear

>>

Complete PostScript language files containing these exampl es accompany
this document.

For acomplete list and description of the keysin the FunctionType 2
Function dictionary, see Table 3.16 in the Supplement: PostScript Language
Reference Manual.

FunctionType 3: 1-Input Stitching Function

Stitching Functionsjoin or stitch the outputs of two or more separate function
domains across asingle domain. That is, FunctionType 3 functions define a
stitching of the subdomains of several one-input functions (m equals 1) to
produce a single, new one-input function. One example use of this function
would beto create arainbow by stitching together the separate bands of color.
One dictionary and one function would be needed for each band of the
rainbow to define the start and end colorsin the gradient fill.

Stitching functions can be used to obtain what is known in some applications
asamid-linear blend, for example, agradient fill that runs from green to red
and back to green. One complex way to obtain this gradient fill would be to
use a sampled function to define a color ramp that goes from 0 to 1 then back
to 0. A simpler way to due thiswould be to use a one-input stitching function
that contains two exponential interpolation functions with exponents of one
(seethe previous section). The first function would then define aramp from 0
to 1, and the second function would define the ramp from 1 back to 0. By
setting the Bounds key of the stitching function to 0.5, the end color of the
first color ramp will occur in the middle of the domain.

The stitching function is designed to make it easy to combine several
functions to be used within one shading, over different parts of the domain
defined in the Shading dictionary. The same effect can be achieved by
creating a separate Shading dictionary for each function, where the
dictionaries have adjacent domains. However, since each Shading dictionary

2 Implementing Smooth Shading 67

pajelodioou] SWaISAS agopy

Adobe Systems Incorporated

Table 14

Smooth Shading

would have similar keys, and because the overall effect desired is one
Shading dictionary, it is more convenient to have asingle Shading
dictionary with a multiple function definition.

FunctionType 3 Function dictionaries provide a general mechanism to
invert the domains of “1-in” functions.

Table 14 shows the keys that define a Function dictionary for
FunctionType 3. The keys are described in more detail below.

Keys for FunctionType 3 Function dictionaries

Key Type

FunctionType integer required
Domain array required
Range array optional
Functions array required
Bounds array required
Encode array required

The FunctionType, Domain, and Range keys are defined the same as with
FunctionType 0.

FunctionType must be 3.

Functions isarequired array of one-in function dictionaries making up the
stitching function. Output dimensionality of all functions must be compatible
with the value of Range.

Bounds isarequired array of numbers, the size of which must be one less
than the size of the Functions array. Elements of this array must be in order
of increasing magnitude, and each element must be within the value of
Domain. The Bounds and Domain keys define the intervals for which each
function from the Functions array is used to determine the value of the
stitched function. Each interval is mapped through the Encode array into the
domain of the corresponding function.

The Encode array isaso required and must be and array of numbers. The
size of this array must be twice the size of the Functions array. A pair of
Encode array values is associate with each function. The values map each
subset of the domain defined by Domain and the Bounds array to the domain
of the corresponding function.

10 October 1997

An input d to the stitching function in the subdomain
Byi_1=d<By

will be encoded as follows:
E.. —E..
2i+1 2i
e=(d-B, ,)xz——=—=+E
A1 By By g
where B; and E; are elements of the Bounds array and Encode array,
respectively, and the resulting value e is routed as input to the it" function in
the Function array. Thisis similar to the Encode definition in the sampled
function description. For these purposes, B.; is considered to be the first
element of the Domain array, and B, (where n is the number of subdomains)
is considered to be the second element of the Domain array. The subdomain
mappings may be inverted by alowing E,., to be less than E,,.

2i

2 Implementing Smooth Shading 69

pajelodioou] SWaISAS agopy

Adobe Systems Incorporated

70

Example 13

Note

Smooth Shading

Stitching function (FunctionType 3)

YAXSTI TCH. PS

%his is a very sinple illustration of axial shading
Qsing a stitching function with two exponenti al

% nt er pol ati on shadi ng functions.

%Set up graphics state and other vari abl es

finch {72 mul} def

o%efine the two exponential shading functions
/ Functionl 7 dict def Functionl begin

/ FunctionType 2 def

/Domain [0 1] def

/ C0 [1 0 1] def
/Cl [1 1 0] def
I'N 1 def
end

[Function2 7 dict def Function2 begin
/ FunctionType 2 def
/Domain [0 1] def

/ C0 [1 1 0] def

/C1 [0 1 1] def

I'N 1 def

end

gsave
rectclip
newpat h

% defi ne shading dictionary and stitching function
<<

/ Shadi ngType 2
/ Col or Space / Devi ceRGB
/Coords [1 inch 1 inch 7.5 inch 10 inch]
[Function <<
/ FunctionType 3
/ Functions [Functionl Function2]
/Domain [0 1]
/ Bounds [0. 5]
/Encode [0 1 0 1]
>>

>> shfil
grestore
showpage
Complete PostScript language files containing these exampl es accompany

this document.

For a complete list and description of the keysin the FunctionType 3
Function dictionary, see Table 3.17 in the Supplement: PostScript Language
Reference Manual.

10 October 1997

2.18 Currentsmoothness and Setsmoothness Operators

The currentsmoothness operator returns the current value of the
smoothness parameter in the graphics state. The returned valueisin the range
[0,1].

The setsmoothness operator is used to set the smoothness parameter in the
graphics state. It takes asinput an integer or real valuein therange[0,1]. This
operator is used to control the quality of smooth shaded output, indirectly
affecting rendering performance. The trade-off of quality and performance
depends on the value: a higher (larger) value will result in less smoothness
but better performance, alower (smaller) value will result in more
smoothness but a slower or lesser performance.

Smoothness, in this context, is defined as the allowed color error between the
following: smooth shading that is approximated with piecewise linear
interpolation and the true shading of alinear or non-linear shading function.

The error is measured for each color component, a comparison is then made,
and the maximum error value is used. Each error valuesis specified asa
percentage of the range of its associated color component. The percentageis
expressed as avaluein the range [0,1].

For example, avalue of 0.1 represents an allowed error of 10% for each color
component.

Smoothness is dependent on several factors, including the number of
displayable or printable colors, the resolution of the screen or print device,
and the acceptable level of performance for the device.

See Chapter 8 of the Supplement: PostScript Language Reference Manual for
more information on the smoothness operators.

2 Implementing Smooth Shading 71

pajelodioou] SWaISAS agopy

Adobe Systems Incorporated

72

3

Smooth Shading

Smooth Shading Tips

Thefollowing isalist of tipsthat can be used by devel opers who are
interested in implementing smooth shading. In addition, the examples given
in this document, and the accompanying sample files, can be used as guides
for implementing each smooth shading type or method.

Pattern dictionaries vs. shfill

» UseaPattern dictionary to fill paths.

» Useshfill for creating shading geometries.

PatternType 1 pattern dictionaries using shfill in PaintProc

To producetiling patterns (repeated patterns), shfill can be called from within
the PaintProc of aType 1 Pattern dictionary.

Using the smoothness operators

Although these operators are avail able to applications developers, they are
more useful to printing device manufacturers and devel opers for balancing
performance and quality issues with the product.

Best uses for each function type

Exponentia interpolation functions are best suited for the axial and radial
shading methods (ShadingType 2 and 3) used by draw and illustration
applications.

10 October 1997

Best uses of each smooth shading type

Function-based shading (ShadingType 1) can be used to generate objects
such asan RGB color cube. The color cube can be implemented with three
shading dictionaries that use sampled functions. The sample tablesin the
sampled functions only use one-bit data to specify the color components at
the corners of the cube.

Axia and radial shading methods (ShadingType 2 and 3) are most
commonly used for creating gradient fillsin draw and illustration
applications.

Axial shading isgood for gradient fills that vary smoothly (either linearly
or exponentially) from one point to the next.

Radial shading is most commonly used to generate the illusion of
spherical, conical, and cylindrical shapes or objects.

Triangle meshes (ShadingType 4 and 5) can be used for creating
polygonal gradient fills.

Coons patch meshes (ShadingType 6 and 7) can be used for creating
conical gradient fills. A conical gradient fill isa color fan that revolves
around some point (not necessarily a central point). The color fan can be
implemented with four Coons patches, one for each quadrant.

Smooth shading and compression

All of the stream (file) data can be compressed by using a standard
compression filter. This applies to the DataSource keys for ShadingType 4,
5,6, 7, and FunctionType 0 and 3 (indirectly). This does not apply if the data
isin the form of an array or string.

3 Smooth Shading Tips 73

pajelodioou] SWaISAS agopy

Adobe Systems Incorporated

74

Smooth Shading

10 October 1997

Appendix A

Bibliography of Outside
sSources

While thisin not an exhaustive list of references, it will give the reader some
sources for the mathematical concepts covered in this document.

Farin, Gerald, Curves and Surfaces for CAGD, Third Edition, Academic
Press, Inc. Harcourt Brace Jovanovich, Publishers, 1993. ISBN 0-12-249052-
5. Chapter 16 coversinformation on Tensor product patches. Chapter 20
coversinformation on Coons patches.

Foley, J. and A. van Dam, Fundamentals of I nteractive Computer Graphics,
Second Edition, Addison-Wesley, 1982. ISBN 0-201-14468-9. Chapter 11
coversinformation on Parabolic Bicubic surfaces. Chpater 16, Section 2.4,
coversinformation on Gouraud shading.

Walberg, George, Digital Image Warping, Third Edition, |EEE Computer

Society Press, 1994. ISBN 0-8166-8944-7. Chapter 5 covers information on
interpolation.

75

pajelodioou] SWaISAS agopy

Adobe Systems Incorporated

76

Appendix A: Bibliography of Outside Sources

10 October 1997

Index

A

AntiAlias 27, 29, 32, 36, 45, 50
Axid Shading 15, 29

B

Background 18, 23, 26, 27, 29,
32, 34, 36, 45, 50

BBox 23, 27, 29, 32, 33, 36, 45,
50

Bernstein Polynomials 55

Bézier Control Points 47

Bézier Curve 15, 47, 51, 53, 56

Bézier Patch Mesh 13

Bilinear Interpolation 47, 48, 64

BitsPerComponent 36, 37, 41, 45,
49, 50, 57

BitsPerCoordinate 36, 41, 45, 49,
50, 57

BitsPerFlag 36, 37, 41, 49, 50, 57

BitsPerSample 62, 64

Bounds 67, 68

C

CO 66

Cl 66

ColorSpace 18, 23, 24, 25, 26, 27,
29, 30, 32, 34, 36, 37, 38,
41, 45, 50, 51

Contours 13

Coons Patch 47, 48, 55, 56

Coons Patch Mesh 15, 48

Coords 29, 32

Cubic Spline Interpolation 62, 64

currentfile 18

currentsmoothness 16, 17, 71

D

DataSource 23, 36, 37, 38, 41, 45,
49, 50, 55, 57, 62, 73

Decode 36, 37, 38, 41, 45, 49,
50, 62, 63, 64

DeviceN 26

Domain 15, 27, 29, 32, 33, 34,
38, 59, 60, 61, 63, 66, 68,
69

E

Encode 38, 62, 63, 68, 69
Exponential Interpolation 67, 72
Extend 30, 32, 33, 34

F

fill 14, 21, 23

Free-Form Triangle Mesh 15, 36

Function xi, 14, 17, 23, 26, 27,
29, 30, 32, 33, 34, 37, 38,
42, 50, 53, 60, 61, 63, 65,
66, 67, 69

Function-Based Shading 15, 26

Functions 68

FunctionType 60, 61, 65, 66, 67,
68

FunctionTypeO 60, 61, 73

FunctionType2 66

FunctionType3 67, 70, 73

G

Gouraud Shading 15, 36, 42
Gradient Fill xi, 13, 21, 23, 24,
27, 29, 30, 33, 47, 73

77

pajelodioou] SWaISAS agopy

Adobe Systems Incorporated

H
Halftone 63

image 18, 42, 63
imagemask 14, 21, 23
Implementation 21

Indexed 26, 30, 34, 42, 53

L

LanguagelLevel 3 xi, xii, 14, 16,
21, 23, 59, 66

Lattice-Form Triangle Mesh 15, 45

Linear Interpolation 29, 42, 48, 53,
62, 66

Linear Parametric Variable 33

Linear Transformation 64

M

makepattern xi, 21

Matrix 27

Multilinear Interpolation 61
Multi-Variable Interpolation 63

N

N 66
Nonlinear Interpolation 29, 36, 47

O
Order 62, 64

P

PaintProc 17, 22, 23, 72

Parametric Equation 33

Pattern xi, 14, 16, 17, 21, 23, 24,
26, 72

PatternType 14, 21, 23

PatternTypel 17, 22, 23

PatternType2 21, 23

R

Radia Shading 15

Range 59, 60, 61, 62, 63, 64, 66,
67, 68, 71

rangecheck 18, 41

78

S

Sampled Functions 60

setcolor 14, 21

setcolorspace 21

setpattern xi, 14, 21

setsmoothness 16, 17, 71

Shading 14, 17, 18, 21, 22, 23,
24, 26, 27, 29, 31, 32, 36,
38, 43, 45, 46, 49, 54, 57,
59, 60, 67

ShadingType 23, 24, 25, 26, 29,
32, 36, 41, 45, 50

ShadingTypeO 23

ShadingType1l 15, 16, 26, 27, 60

ShadingType2 15, 29, 72

ShadingType3 15, 33, 72

ShadingType4 15, 16, 36, 37, 50,
73

ShadingType5 15, 16, 37, 44, 50,
73

ShadingType6 15, 16, 37, 53, 73

ShadingType 7 15, 16, 37, 55, 73

shfill xi, 14, 17, 18, 23, 24, 72

show 14, 21

Sinusoidal Function 60

Size 62, 63, 64

Spline Interpolation 61

Spot Function 63

Stitching Function 67, 68, 69

stroke 14, 21

T

Tensor Product Patch 15, 55, 56
Type 1 Pettern 72

)
undefinedresult 18, 27

V
VerticesPerRow 44, 46

X
XUID 21

10 October 1997

	Examples
	Smooth Shading
	1 Smooth Shading
	1.1 Overview of Smooth Shading
	1.2 Benefits of Using Smooth Shading

	2 Implementing Smooth Shading
	2.1 Shfill Operator
	2.2 Pattern Dictionaries
	2.3 Painting With a Pattern Dictionary
	2.4 Shading Dictionaries
	2.5 ColorSpace Key for Shading Dictionaries
	2.6 ShadingType 1: Function-Based Shading
	2.7 ShadingType 2: Axial Shading
	2.8 ShadingType 3: Radial Shading
	2.9 ShadingType 4: Free-Form Gouraud-Shaded Triang...
	2.10 ShadingType 5: Lattice-Form Gouraud-Shaded Tr...
	2.11 ShadingType 6: Coons patch meshes
	2.12 ShadingType 7: Tensor Product Patch Meshes
	2.13 Functions
	2.14 Function Dictionaries
	2.15 FunctionType 0: Sampled Functions
	2.16 FunctionType 2: Exponential Interpolation Fun...
	2.17 FunctionType 3: 1-Input Stitching Function
	2.18 Currentsmoothness and Setsmoothness Operators...

	3 Smooth Shading Tips

