

Masked Images

10 October 1997

Technical Note #5601

LanguageLevel 3

PN LPS5601

Adobe Systems Incorporated

Adobe Systems Europe Limited
Adobe House, Mid New Cultins
Edinburgh EH11 4DU
Scotland, United Kingdom
+44-131-453-2211

Adobe Systems Japan
Yebisu Garden Place Tower
4-20-3 Ebisu, Shibuya-ku
Tokyo 150 Japan
+81-3-5423-8100

Corporate Headquarters
345 Park Avenue
San Jose, CA 95110-2704
(408) 536-6000

Eastern Regional Office
24 New England
Executive Park
Burlington, MA 01803
(617) 273-2120

Adobe

®

 Developers Association

A

do
be

 S
ys

te
m

s
In

co
rp

or
at

ed

Copyright © 1997 Adobe Systems Incorporated. All rights reserved.

NOTICE: All information contained herein is the property of Adobe Systems Incorporated.

No part of this publication (whether in hardcopy or electronic form) may be reproduced or transmitted,
in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written consent of the publisher.

PostScript is a registered trademark of Adobe Systems Incorporated. All instances of the name
PostScript in the text are references to the PostScript language as defined by Adobe Systems
Incorporated unless otherwise stated. The name PostScript also is used as a product trademark for
Adobe Systems’ implementation of the PostScript language interpreter.

Adobe, PostScript, PostScript 3, and the PostScript logo are trademarks of Adobe Systems
Incorporated. Apple and Macintosh are trademarks of Apple Computer, Inc. registered in the U.S. and
other countries. All other trademarks are the property of their respective owners.

Contents

A

dobe S
ystem

s Incorporated

1 Masked Images 13
Overview of Masked Images 13
Benefits of Using Masked Images 14

2 Implementing Masked Images 15
Image Operator 15
Image Dictionaries 15
Samples in Image Data 16
ImageType 3 Image Dictionary 18
ImageType 4 Image Dictionary 28

3 Tips and Techniques 32
Using ImageType 3 image Dictionaries 32
Using the Various Interleave Types 32
Using ImageType 4 image Dictionaries 32
MaskColor Values or Ranges for ImageType 4 32
Use of the MultipleDataSources Key 33
iii

A

do
be

 S
ys

te
m

s
In

co
rp

or
at

ed
iv Contents 10 October 1997

Figures
A
dobe S

ystem
s Incorporated
 Figure 1 Sample level interleaving for a Type 1 image in the RGB color space 16
 Figure 2 Scan line level interleaving for a Type 1 image in the RGB color space 17
 Figure 3 Dictionaries used for ImageType 3 image masks 18
 Figure 4 Data representation for InterleaveType 1 in the RGB color space 22
 Figure 5 Data representation for InterleaveType 2 24
 Figure 6 Data representation for InterleaveType 3 26
 Figure 7 Image data filtered by a MaskColor range or value 30
v

A

do
be

 S
ys

te
m

s
In

co
rp

or
at

ed
vi Figures 10 October 1997

Tables
A
dobe S

ystem
s Incorporated
Table 1 Keys for the ImageType 3 image dictionary 18
Table 2 Keys for the MaskDict dictionary 19
Table 3 Keys for the DataDict dictionary 20
Table 4 Keys for the ImageType 4 image dictionary 28
vii

A

do
be

 S
ys

te
m

s
In

co
rp

or
at

ed
viii Tables 10 October 1997

Examples
A
dobe S

ystem
s Incorporated
Example 1 ImageType 3 image using InterleaveType 1 23
Example 2 ImageType 3 image using InterleaveType 2 25
Example 3 ImageType 3 image using InterleaveType 3 27
Example 4 ImageType 4 image 31
ix

A

do
be

 S
ys

te
m

s
In

co
rp

or
at

ed
x Figures 10 October 1997

Preface
A
dobe S

ystem
s Incorporated
This Document

This is the original release for Masked Images, a document that provides a
detailed description of masked images, a LanguageLevel 3 feature of the
PostScript® language that enables a developer to create and use pixel-based
masks for various types of images.

Intended Audience

This document is written for software developers who are interested in
learning about masked images or adding masked images capabilities to an
application that supports PostScript display or printing devices.

It is assumed that the developer has a strong background in image editing and
page layout applications. This knowledge will help in the understanding of
the pixel-based masks and the methods for supplying mask and image data to
the application.

Organization of This Document

Section 1, “Masked Images,” gives an overview of the LanguageLevel 3
feature and all of its parts. A comparison of current and previous methods of
masking images is made as well as the uses for, and benefits of, this feature in
a PostScript language environment.

Section 2, “Implementing Masked Images,” defines the PostScript extensions
for masked images. Each image mask type or method is described in detail.
Several examples defining dictionary parameters (keys) are included as well
as several workable code samples for each of the supported image mask
types. The examples shown include use of image dictionaries and the image
operator.

Section 3, “Masked Images Tips and Techniques,” gives helpful information
on using masked images and selecting the best mask type for specific
application needs.
xi

A

do
be

 S
ys

te
m

s
In

co
rp

or
at

ed

Related Publications

Supplement: PostScript Language Reference Manual (LanguageLevel 3
Specification and Adobe PostScript 3™ Version 3010 Product Supplement),
available from the Adobe® Developers Association, describes the formal
extensions to the PostScript language that have occurred since the publication
of the PostScript Language Reference Manual, Second Edition. This
supplement also includes all LanguageLevel 3 extensions available in version
3010.

PostScript Language Reference Manual, Second Edition (Reading, MA:
Addison-Wesley, 1991) is the developer’s reference manual for the PostScript
language. It describes the syntax and semantics of the language, the imaging
model, and the effects of the graphical operators.

Statement of Liability

THIS PUBLICATION AND THE INFORMATION HEREIN IS FURNISHED
AS IS, IS SUBJECT TO CHANGE WITHOUT NOTICE, AND SHOULD NOT
BE CONSTRUED AS A COMMITMENT BY ADOBE SYSTEMS
INCORPORATED. ADOBE SYSTEMS INCORPORATED ASSUMES NO
RESPONSIBILITY OR LIABILITY FOR ANY ERRORS OR
INACCURACIES, MAKES NO WARRANTIES OF ANY KIND (EXPRESS,
IMPLIED, OR STATUTORY) WITH RESPECT TO THIS PUBLICATION,
AND EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES OF
MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSES, AND
NONINFRINGMENT OF THIRD-PARTY RIGHTS.
xii Preface 10 October 1997

Masked Images
A
dobe S

ystem
s Incorporated
1 Masked Images

1.1 Overview of Masked Images

Within the graphic arts industry, it is common to take an image (such as a
photograph) from an image editing application, mask out a portion of the
background, and then place the cropped image on a different background.
The new image is often transferred to and used in a page layout application.

In previous levels of the PostScript language, the process of masking is
commonly done by drawing a clipping path between the pixels of the source
image. An image or other graphic must be painted within this path. Such
paths often need many small line segments to produce. If the clipping path is
very complex, such as what is needed for a tree and its leaves, or if there is
more than one clipping path, such as for a forest of these trees, a limitcheck
error might result when an attempt is made to save or store the clipping path
or print it. It is also possible to run out of memory if the graphics state
containing the clipping path or paths is saved.

In LanguageLevel 3, it is now possible to place images on the page without
this concern for the constraints of the clipping path. It is now possible to
indicate which individual pixels in an image will be painted and which will
be masked. A masked image contains both the source data used in an ordinary
image plus mask data which determines which image pixels will be painted.
This assumes a 1-to-1 pixel interleave; in general, the pixels of mask data
define which areas of an image are to be painted, where area can be as small
as less than a pixel in size.

The PostScript language definition of the image operator and image
dictionary has been extended to allow for two new image types, ImageType 3
and ImageType 4, which represent the two supported image mask types
(methods).

ImageType 3 masked images combine a regular sampled image with an
explicit mask. The mask is treated essentially the same as the source data of
the imagemask operator. It indicates the places on the page that are painted
13

A

do
be

 S
ys

te
m

s
In

co
rp

or
at

ed

and those that are masked (left unchanged). The unmasked portions are
painted with the corresponding portions of the sampled image; the masked
portions are not painted.

The description of a regular image contains N color components per pixel
(where N depends on the current color space); the description of a masked
image contains N color components plus one mask component per pixel. The
mask data may be included with the image data or provided separately. The
image and the mask must be coincident on the page (overlay one another);
that is, they must be in the same position and approximately the same size
(plus or minus a pixel-width). They do not need to be the same resolution.

ImageType 4 masked images are defined by specifying a color or range of
colors. Pixels in the image that match this color or are within the range of
colors are not painted, allowing the background image to show through. This
technique is often called Chroma-key masking.

1.2 Benefits of Using Masked Images

There are several benefits in using masked images over older methods of
providing masks:

• Masks can be represented and processed more efficiently. Complex and/or
potentially large clipping paths are no longer required for masking.

• Masked images benefits all applications that edit images or place images
(page layout) by improving performance and printing reliability.

• Image data is now controllable on a pixel-by-pixel basis, a scan line basis,
or on a selected color basis.
14 Masked Images 10 October 1997

A

dobe S
ystem

s Incorporated

2 Implementing Masked Images

Section 2.1, “Image Operator” describes the image operator and how it can
be used to paint masked images. Section 2.2, “Image Dictionaries” through
Section 2.5, “ImageType 4 Image Dictionary” covers the definition and use
of image dictionaries for the individual image mask types and interleave
types. Also included in Section 2.3 is a discussion of samples in image data.

Complete descriptions of all of the PostScript language extensions for
masked images can be found in the Supplement: PostScript Language
Reference Manual.

2.1 Image Operator

The image operator has been extended to render standard and masked
images. Standard images are still rendered using an ImageType 1 image
dictionary as input to the image operator. A masked image is rendered by
using an ImageType 3 or ImageType 4 image dictionary as input to the
image operator.

Note Examples using the image operator can be found in Sections 2.4 and 2.5 of
this document.

For more information on the image operator for standard images, see
Sections 4.10 and 8.2 of the PostScript Language Reference Manual, Second
Edition.

2.2 Image Dictionaries

Two new image types can be used with the image operator to produce
masked images:

• ImageType 3: This dictionary contains two subdictionaries that describe
the image and mask data. These are the DataDict and MaskDict
dictionaries, respectively. Each of these is defined using an ImageType 1
image dictionary.

How the mask data is provided is specified by the InterleaveType key in
the ImageType 3 dictionary. The behavior of the mask is determined by
the entries in the MaskDict dictionary (see Table 2)

• ImageType 4: This dictionary has the same format as an ImageType 1
image dictionary with the added key MaskColor which specifies the color
or range of colors that will be used as a mask.

Note There are two new instances of the implicit resource ImageType. These are 3
and 4, pertaining to ImageType 3 and ImageType 4 image dictionaries.
2 Implementing Masked Images 15

A

do
be

 S
ys

te
m

s
In

co
rp

or
at

ed

2.3 Samples in Image Data

In the context of image data, a sample is a set of bits that together define a
single pixel. The simplest sample value is a single bit that defines a pixel
whose values are either 0 (black) or 1 (white). More complex samples have
multiple bits per pixel and are used to define shades of gray or colors. For
example, a sample with 24 bits of data could define a pixel in the RGB color
space with 8 bits per color component (8 bits for red + 8 bits for green + 8
bits for blue). As another example, a sample with 8 bits of data could define a
pixel in the Gray color space whose value is one of 256 shades of gray (black,
white, and 254 intermediate shades of gray). A single pixel (or sample) of an
image has a depth defined by the number of bits per pixel (or sample). Pixel
or sample depth plays an important role in the context of how pixel samples
are arranged to from an image composed of scan lines.

An image is composed of a number of scan lines or rows. The number of
rows in an image defines the height of the image. Each scan line is composed
of a number of samples. The number of samples in the scan line defines the
width of the image. A complete image has a width consisting of n samples
(columns) per scan line, a height consisting of m scan lines (rows), and a
depth consisting of d bits per pixel. This can be represented by the formula

n * m * d

Multiple color component image data (for example, data for the RGB color
space) for Type 1 images can be interleaved either at the sample level or the
scan line level. For image data that is interleaved at the sample level, the
MultipleDataSources key (see Section 4.10.5 of the PostScript Language
Reference Manual, Second Edition) must be set to false. Figure 1 shows this
data representation for image data in the RGB color space.

Figure 1 Sample level interleaving for a Type 1 image in the RGB color space

RGB color space

R value G value B value

R value G value B value

R value G value B value

R value G value B value

sample
16 Masked Images 10 October 1997

A
dobe S

ystem
s Incorporated
Image data that is interleaved at the scan line level is arranged so that one
entire scan line of data is given for each color component. For example, in the
RGB color space, there would be one scan line of red, followed by one scan
line of green, followed by one scan line of blue, and so on. In this case, the
MultipleDataSources key must be set to true and three separate procedures
(one for each color component) are required to deliver the image data. shows
this data representation for image data in RGB color space. Figure 2 shows
this method.

Figure 2 Scan line level interleaving for a Type 1 image in the RGB color space

For image data that is interleaved at the scan line level, the color component
of a given pixel represents a slice through the consecutive scan lines that
contain the color components.

In LanguageLevel 3, the notion of the image sample has been maintained,
and the two interleaving methods described above have been extended for use
with the ImageType 3 image dictionary for masked images. In addition, a
new interleaving method has been added that assumes the image data and
mask data come from separate sources and different data channels. For
ImageType 4 image dictionaries, the image data can be defined similarly to
the way it is defined for Type 1 images.

RGB color space

scan line

red

green

blue

red

green

pixel
2 Implementing Masked Images 17

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
2.4 ImageType 3 Image Dictionary

A Type 3 (masked) image requires three dictionaries:

• An ImageType 3 image dictionary. This dictionary is the argument to the
image operator.

• A subdictionary to define how the mask data is laid out. This dictionary is
a modified image Type 1 dictionary and is referenced by the MaskDict
key.

• A subdictionary to define how the image data is laid out. This dictionary is
a modified image Type 1 dictionary and is referenced by the DataDict key.

Figure 3 shows the relationship and hierarchy of the dictionaries needed for
ImageType 3 images.

Figure 3 Dictionaries used for ImageType 3 image masks

Table 1 lists the keys used to define an ImageType 3 image dictionary. The
keys are described in more detail below.

Table 1 Keys for the ImageType 3 image dictionary

ImageType must have a value of 3.

The entries in the MaskDict and DataDict dictionaries are described in Table
2 and Table 3, respectively. The InterleaveType key is discussed after the
presentation of these two dictionaries and their associated keys (See
“InterleaveType Key” on page 22).

Key Type

ImageType integer required

InterleaveType integer required

MaskDict dictionary required

DataDict dictionary required

ImageType 3 image dictionary

ImageType 1
MaskDict
dictionary

ImageType 1
DataDict
dictionary
18 Masked Images 10 October 1997

A
dobe S

ystem
s Incorporated
Note For more information on ImageType 1 image dictionaries, see Section 4.10.5
of the PostScript Language Reference Manual, Second Edition.

Note Entries in the MaskDict dictionary are interpreted as if the dictionary were
supplied to the imagemask operator, except as indicated in Table 2.

Table 2 lists the keys used for defining the MaskDict dictionary. The keys are
described in more detail below.

Table 2 Keys for the MaskDict dictionary

ImageType must have a value of 1.

Width specifies the width of the mask in samples. If this is used with
InterleaveType 1, then the value of Width must be equal to the value of
Width defined in DataDict (see Table 3).

Height specifies the height of the mask. If this is used with InterleaveType 1,
the value of Height must be equal to the value of Height defined in DataDict
(see Table 3). If this is used with InterleaveType 2, the value of Height may
differ from the value of Height in DataDict with the following restrictions:
one must be an integral multiple of the other; that is, there may be multiple
lines of mask data per line of image data or multiple lines of image data per
line of mask data; the value of either mask height or image height must be
unity.

ImageMatrix is an array of six numbers that defines a transformation from
current user space to image source space. This matrix must be approximately
equal to the value of ImageMatrix defined in DataDict (see Table 3) scaled
by the difference in size of the mask and image data.

If the MultipleDataSources key is present in the dictionary, then its value
must be set to false.

Key Type

ImageType integer required

Width integer required

Height integer required

ImageMatrix array required

MultipleDataSources Boolean optional

DataSource various required (see below)

BitsPerComponent integer required

Decode array required

Interpolate Boolean optional
2 Implementing Masked Images 19

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
DataSource is required for InterleaveType 3. For the other two interleave
types, it must not be present. DataSource specifies the data source for the
mask data. It can be a string, a stream, a file, or a filter.

If BitsPerComponent is used with InterleaveType 1, its value must be one.
Otherwise, the value of BitsPerComponent must be equal to the value of
BitsPerComponent defined in DataDict (see Table 3).

The Decode array describes how to map mask sample values into the
appropriate range of values. The length of this array must be two. If the array
is [0 1], a mask sample value of 0 designates a painted sample, and a value of
1 designates an unpainted sample. If the array is [1 0], a mask sample value of
1 designates a place to be painted, and a value of 0 designates a place to be
masked.

If the Interpolate key is present and true, then interpolation will be
performed on the mask. The default value for Interpolate is false.

Note Entries in the DataDict dictionary are interpreted as if they were entries for a
ImageType 1 image dictionary, except as indicated otherwise in Table 3

Table 3 lists the keys used to define the DataDict dictionary. The keys are
described in more detail below.

Table 3 Keys for the DataDict dictionary

ImageType must have a value of 1.

Width specifies the width of the source image in samples.

Height specifies the height of the source image in samples.

Key Type

ImageType integer required

Width integer required

Height integer required

ImageMatrix array required

MultipleDataSources Boolean optional

DataSource various required

BitsPerComponent integer required

Decode array required

Interpolate Boolean optional
20 Masked Images 10 October 1997

A
dobe S

ystem
s Incorporated
ImageMatrix is an array of six numbers that defines a transformation from
current user space to image source space.

MultipleDataSources specifies whether or not the image data is provided
through multiple data sources. If the value is false, there is only one data
source. If the value is true and InterleaveType 3 is being used, multiple data
sources are used, one per color component, and one for the mask data.

DataSource specifies the data source for the image data. If it is used with
InterleaveType 1 or 2, the mask data is interleaved with the image data either
at the sample level or the scan line level. If it is used with InterleaveType 3,
the data source for the mask is separate from the data source for the image
data (see the PostScript Language Reference Manual, Second Edition,
Section 4.10.5).

BitsPerComponent specifies the number of bits used to represent each color
component. The value of this key can be 1, 2, 4, 8, or 12. The number of bits
is the same for each color component.

The Decode array specifies how to map image sample values into the range
of values appropriate for the current color space. The length of this array
must be exactly twice the number of color components in the current color
space.

The default value for the Interpolate key is false. If the key is present and its
value is true, then image interpolation will be performed.
2 Implementing Masked Images 21

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
InterleaveType Key

The InterleaveType key in the ImageType 3 image dictionary specifies if
and how the image data and mask data (as defined in the DataDict and
MaskDict dictionaries above) are interleaved, or stored together. The
InterleaveType key can have one of three values – 1, 2, or 3.

InterleaveType 1

A value of 1 indicates that the image data and the mask data are component
(or pixel) interleaved. This means that the mask data is interleaved with the
image data on a per-sample basis, with the mask data presented first.

The number of bits per component in the mask (from the key
BitsPerComponent contained in MaskDict) must be the same as the number
of bits per component of the image source (from the key BitsPerComponent
contained in DataDict).

The value of the mask component should be either all zeros or all ones. If any
other value(s) is/are specified, it/they will be treated as a one.

Figure 4 shows how data is component interleaved in the RGB color space.

Figure 4 Data representation for InterleaveType 1 in the RGB color space

Example 1 shows an ImageType 3 mask using InterleaveType 1.

Note A complete PostScript language file containing this example accompanies
this document.

RGB color space

R value G value B value

R value G value B value

R value G value B value

R value G value B value

sample

mask
value

mask
value

mask
value

mask
value
22 Masked Images 10 October 1997

A
dobe S

ystem
s Incorporated
Example 1 ImageType 3 image using InterleaveType 1

%MASKIM31.PS
%This example illustrates Type 3 Masked Images with
%Type 1 interleave and using /ReusableStreamDecode
%Note that the /ReusableStreamDecode filter is optional
%for InterleaveType 1. The data could be put in-line
%right after the call to the image operator.
currentfile /ASCIIHexDecode filter
/ReusableStreamDecode filter
ff99ffff ff99ffff ff99ffff ff99ffff ff99ffff ff99ffff
...% image and mask data
>
/datastream exch def
/inch {72 mul} def
/DeviceRGB setcolorspace
%DataDict
/ImageDataDictionary 8 dict def
ImageDataDictionary begin
 /ImageType 1 def
 /Width 317 def
 /Height 299 def
 /BitsPerComponent 8 def
 /DataSource datastream def
 /MultipleDataSources false def
 /ImageMatrix [317 0 0 299 0 0] def
 /Decode [0 1 0 1 0 1] def
end
%MaskDict
/ImageMaskDictionary 8 dict def
ImageMaskDictionary begin
 /ImageType 1 def
 /Width 317 def
 /Height 299 def
 /BitsPerComponent 8 def
 /MultipleDataSources false def
 /ImageMatrix [317 0 0 299 0 0] def
 /Decode [0 1] def
end
/MaskedImageDictionary 7 dict def
MaskedImageDictionary begin
 /ImageType 3 def
 /InterleaveType 1 def
 /MaskDict ImageMaskDictionary def
 /DataDict ImageDataDictionary def
end
%Reset reusable stream and do initial image
...% add code here
%Reset reusable stream, invert Decode and do next image
...% add code here
showpage
2 Implementing Masked Images 23

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
InterleaveType 2

An InterleaveType value of two indicates that the image data and the mask
data are scan line interleaved. This means that the mask data is interleaved
with image data at the boundary between two scan lines, with the mask data
presented first. The mask and the image sample scan lines must be padded to
byte boundaries separately. The mask data will always be one bit-per-pixel
regardless of the image sample depth.

The height of the mask (specified by the Height key in MaskDict) may differ
from the height of the image data (specified by the Height key in DataDict),
with the following restrictions: one must be an integral multiple of the other;
that is, there may be multiple lines of mask data per line of image data or
multiple lines of image data per line of mask data. It is not possible to group
multiple lines of both types of data. For example, three lines of mask data per
one line of image data is supported, but three lines of mask data per two lines
of image data is not. The value of either the mask height or the image height
must be unity.

The smaller of either the mask Height or image Height values defines the
number of interleave blocks. An interleave block consists of either one row of
mask data followed by one or more rows of image data, or, one or more rows
of mask data followed by one row of image source data. All interleave blocks
must have the same number of scan lines of each data type. The relationship
between the Height values in each dictionary will determine the format of the
interleave block.

The width values of each dictionary are arbitrary.

Figure 5 shows how data is scan line interleaved.

Figure 5 Data representation for InterleaveType 2

Example 2shows an ImageType 3 mask using InterleaveType 2.

Note A complete PostScript language file containing this example accompanies
this document.

scan line

mask data

image data

mask data

image data

mask data

image data

Padded
to byte

boundaries
24 Masked Images 10 October 1997

A
dobe S

ystem
s Incorporated
Example 2 ImageType 3 image using InterleaveType 2

% This example illustrates Type 3 Masked Images with
% Type 2 interleave and using /ReusableStreamDecode
%Note that the /ReusableStreamDecode filter is optional
%for InterleaveType 2. The data could be put in-line
%right after the call to the image operator.
currentfile /ASCIIHexDecode filter
/ReusableStreamDecode filter
FFFFFFFFFFFFFFFFFFFFFFF87FFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFF8
...%image and mask data
ffff99ffff99ffff99ffff99ffff99ffff99ffff99ffff99ffff
99ffff99ffff
>
/datastream exch def
/inch {72 mul} def
/DeviceRGB setcolorspace
/ImageDataDictionary 8 dict def
ImageDataDictionary begin
...%Similar to Example 1
end
/ImageMaskDictionary 8 dict def
ImageMaskDictionary begin
...%Same as for Example 1
end
/MaskedImageDictionary 7 dict def
MaskedImageDictionary begin
 /ImageType 3 def
 /InterleaveType 2 def
 /MaskDict ImageMaskDictionary def
 /DataDict ImageDataDictionary def
end
%Reset reusable stream and do initial image
...% add code here
%Reset reusable stream, invert Decode and do next image
...% add code here
showpage
2 Implementing Masked Images 25

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
InterleaveType 3

Note InterleaveType 3 is intended for high-end or disk-based printing systems
because of the need for extra space or memory to hold the separate mask and
image data sources.

An InterleaveType value of type three indicates that the image data and the
mask data are provided through separate sources and are sent on different
data channels. The mask data source is defined in the MaskDict subdictionary
of the ImageType 3 image dictionary. The image data source is defined in the
DataDict subdictionary of the ImageType 3 image dictionary.

The height and width of the mask data are independent of the height and
width of the image source data, but the mask must have the same orientation
and placement as the image.

Figure 6 shows a data representation when the image data and mask data
come from separate sources and data channels.

Figure 6 Data representation for InterleaveType 3

The keys of the ImageType 3 image dictionary, MaskDict dictionary, and
DataDict dictionary are also described in Section 4.3 of the Supplement:
PostScript Language Reference Manual.

Example 3 shows an ImageType 3 mask using InterleaveType 3.

Note A complete PostScript language file containing this example accompanies
this document.

Note Complete information on ImageType 3 image dictionaries can be found in
Section 4.3 of the Supplement: PostScript Language Reference Manual.

mask data image data
26 Masked Images 10 October 1997

A
dobe S

ystem
s Incorporated
Example 3 ImageType 3 image using InterleaveType 3

% This example illustrates Type 3 Masked Images with
% Type 3 interleave and using /ReusableStreamDecode.
% The common practice is to actually have only the mask
% data in a reusable stream.
currentfile /ASCIIHexDecode filter
/ReusableStreamDecode filter
FFFFFFFFFFFFFFFFFFFFFFF87FFFFFFFFFFFFFFFFFFFFFFFFFFF
...% mask data
FFFFFFFFFFFFF8
>
/maskstream exch def
currentfile /ASCIIHexDecode filter
/ReusableStreamDecode filter
99ffff99ffff99ffff99ffff99ffff99ffff99ffff99ffff99ffff
...% image data
99ffff99ffff99ffff99ffff99ffff99ffff99ffff99ffff
>
/datastream exch def
/inch {72 mul} def
/DeviceRGB setcolorspace
/ImageDataDictionary 8 dict def
ImageDataDictionary begin
...% same as for Example 1
end
/ImageMaskDictionary 8 dict def
ImageMaskDictionary begin
...% same as for Example 1
end
/MaskedImageDictionary 7 dict def
MaskedImageDictionary begin
 /ImageType 3 def
 /InterleaveType 3 def
 /MaskDict ImageMaskDictionary def
 /DataDict ImageDataDictionary def
end
%Reset mask and data streams and do initial image
...% add code here
%Reset mask and data streams, invert Decode,
%and do next image
...% add code here
showpage
2 Implementing Masked Images 27

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
2.5 ImageType 4 Image Dictionary

An ImageType 4 image dictionary is used for defining Chroma-key images.
This allows for a given color, or a range of colors, to be defined as the mask
value. In other words, it defines the color or colors that are not printed, which
allows the background image or color to be revealed.

Note Entries for the ImageType 4 image dictionary are interpreted as if they were
entries for a ImageType 1 image dictionary, except as indicted otherwise in
the following table.

Note The ImageType 4 image dictionary can not be used with the imagemask
operator.

The keys defining an ImageType 4 image dictionary are listed in Table 4 and
described in more detail, below. All of these keys are the same as those for
the ImageType 1 image dictionary, except for the new key MaskColor.

Table 4 Keys for the ImageType 4 image dictionary

The value of the ImageType key must be 4.

The Width key specifies the width of the source image in samples.

The Height key specifies the height of the source image in samples.

ImageMatrix is an array of six numbers that specify a transformation from
current user space to image source space.

The MaskColor key is an array of values corresponding to the source
representation of the color value that will be masked. These values must be
specified in one of two ways:

Key Type

ImageType integer required

MaskColor integer array required

Width integer required

Height integer required

ImageMatrix array required

MultipleDataSources Boolean optional

DataSource various required

BitsPerComponent integer required

Decode array required

Interpolate Boolean optional
28 Masked Images 10 October 1997

A
dobe S

ystem
s Incorporated
• One value is given for each source color component. The Indexed,
DeviceGray, and Separation color spaces need only one value.

• A pair of values is given for each source color component. In this case, an
image sample is considered to match the mask color if each source color
component lies within each pair (range) of values. Because each source
color component must be tested individually, this option is slower than the
one value per source color component specification.

Values are checked against the incoming data samples as they are read. No
conversion or decoding is done, except for the decompressing of any
compressed data.

The MultipleDataSources key specifies whether or not the image data is
provided through more than one source. If the key is present and true, the
image data is provided through multiple data sources, one per color
component. If the key is false, the image data for all color components is
packed into one data stream, interleaved on a per-sample basis.

DataSource specifies the data source for the image data. Its definition is
covered in the PostScript Language Reference Manual, Second Edition.

The BitsPerComponent key specifies the number of bits used to represent
each color component. The value of this key can be 1, 2, 4, 8, or 12. The
number of bits is the same for each color component.

The Decode array specifies how to map image sample values into the range
of values appropriate for the current color space. The length of this array
must be exactly twice the number of color components in the current color
space.

The Interpolate key specifies whether or not interpolation is to be
performed.If the value is set to true, then image interpolation will be
performed. The value should be left as the default of false to prevent visual
artifacts in the image.
2 Implementing Masked Images 29

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
Figure 7 shows how the image data for an ImageType 4 image dictionary is
filtered for a MaskColor range or value.

Figure 7 Image data filtered by a MaskColor range or value

Note Complete information on ImageType 4 image dictionaries can be found in
Section 4.3 of the Supplement: PostScript Language Reference Manual.

Example 4 shows an ImageType 4 image mask.

Note A complete PostScript language file containing this example accompanies
this document.

 MaskColor value

 MaskColor range

The MaskColor array
“fiters” out the mask colors

from the image data.
30 Masked Images 10 October 1997

A
dobe S

ystem
s Incorporated
Example 4 ImageType 4 image

%MASKIM4.PS
%This example is an illustration of a masked image
%using a Type 4 image dictionary --- that is,
%a Chroma-key mask. Also uses /ReusableStreamDecode.
%Note that reusable streams are not needed for
%ImageType 4 image masks.
/inch {72 mul} def% define inch procedure
currentfile /ASCIIHexDecode filter
/ReusableStreamDecode filter
99ffff99ffff99ffff99ffff99ffff99ffff99ffff99ffff
...% image and mask data
99ffff99ffff99ffff99ffff99ffff99ffff99ffff99ffff
>
/datastream exch def
/ImageDictionary 7 dict def
ImageDictionary begin
 /ImageType 4 def
 /MaskColor [16#99 16#FF 16#FF] def
 /Width 317 def
 /Height 299 def
 /BitsPerComponent 8 def
 /DataSource datastream def
 /MultipleDataSources false def
 /ImageMatrix [317 0 0 299 0 0] def
 /Decode [0 1 0 1 0 1] def
end
%Reset the stream and place the first image...
...% add code here
%Reset the stream and place the second example...
...% add code here
%Reset the stream and place the third example...
...% add code here
showpage
2 Implementing Masked Images 31

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
3 Tips and Techniques

3.1 Using ImageType 3 image Dictionaries

ImageType 3 (mask component based images) is best used when detailed,
pixel-by-pixel control is required over which pixels are printed. Use of this
method, though, causes a substantial increase in the size of the data stream.
For example, an RGB image of 8 bits per component (24 bits per pixel) using
InterleaveType 1 requires 32 bits per pixel. This is a 33% increase in the size
of the data needed for the image.

3.2 Using the Various Interleave Types

With InterleaveType 1, the BitsPerComponent of the mask must be equal to
the BitsPerComponent of the image data, leading to a potentially substantial
increase in the overall data requirements for the image.

InterleaveType 2 and 3 are best used if the mask data can be generated either
at the scan line level or as a separate data source. With these two types, each
pixel of the mask is expressed as a single bit, thereby reducing the overall
amount of data needed for the image.

3.3 Using ImageType 4 image Dictionaries

ImageType 4 (Chroma-key) is best used when there is a well-defined
background color (or range of colors) in the image that are to be masked. The
main advantage of using ImageType 4 masks is that the mask data (a color or
range of colors) is of minimal size compared to the image data and does not
add a substantial amount to the size of the data needed for the image.

3.4 MaskColor Values or Ranges for ImageType 4

A single MaskColor value can be used when the background color of an
image is uniform. In practice, this situation is unusual, though, and is
normally only obtained when the background has been defined using a flat
screen hue/color, such as is defined in an application. The more likely case it
that the background is less flat and more complex (as in the background of a
photograph).

A MaskColor range should be used when the background is more complex;
that is, when it contains fluctuations, highlights, or shadows. The MaskColor
range, then, defines all of the colors that comprise the background.
Fluctuating backgrounds often result when images are scanned into an
application.
32 Masked Images 10 October 1997

A
dobe S

ystem
s Incorporated
3.5 Use of the MultipleDataSources Key

The MultipleDataSources key controls only the manner in which the image
data is interleaved (see Sections 2.3 and 2.4 for more information). It does
not control the way in which mask data interleaves with image data. For
ImageType 4 image dictionaries, there is no mask data to interleave with
image data (although there is mask information in the form of a color value or
range of color values). For ImageType 3 image dictionaries, the
InterleaveType key is used to control how the mask data and image data are
interleaved (see the second half of Section 2.4 for more information).
3 Tips and Techniques 33

A
do

be
 S

ys
te

m
s

In
co

rp
or

at
ed
34 Masked Images 10 October 1997

Index
A
dobe S

ystem
s Incorporated
B

BitsPerComponent 20, 21, 22, 29,
 32

C

Clipping Path 13

D

DataDict 15, 18, 19, 20, 22, 24,
 26

DataSource 20, 21, 29
Decode 20, 21, 29
DeviceGray 29

H

Height 19, 20, 24, 28

I

image xi, 13, 15, 18
imagemask 13, 19, 28
ImageMatrix 19, 21, 28
ImageType 18, 19, 20, 28
ImageType 1 15, 16, 17, 18, 19,

 20, 28
ImageType 3 13, 15, 17, 18, 22,

 24, 26, 30, 32, 33
ImageType 4 13, 14, 15, 17, 28,

 32, 33
Indexed 29
InterleaveType 18, 22, 33
InterleaveType 1 19, 20, 21, 32
InterleaveType 2 19, 21, 24, 32
InterleaveType 3 20, 21, 26, 32
Interpolate 20, 21, 29

L

LanguageLevel 3 xi, xii, 13, 17
limitcheck 13

M

MaskColor 15, 28, 30, 32
MaskDict 15, 18, 19, 22, 24, 26
MultipleDataSources 19, 21, 29,

 33

S

Separation 29

W

Width 19, 20, 28
35

	Figures
	Tables
	Examples
	Masked Images
	1 Masked Images
	1.1 Overview of Masked Images
	1.2 Benefits of Using Masked Images

	2 Implementing Masked Images
	2.1 Image Operator
	2.2 Image Dictionaries
	2.3 Samples in Image Data

	Figure 1 Sample level interleaving for a Type 1 im...
	Figure 2 Scan line level interleaving for a Type 1...
	2.4 ImageType 3 Image Dictionary

	Figure 3 Dictionaries used for ImageType 3 image m...
	Figure 4 Data representation for InterleaveType 1 ...
	Figure 5 Data representation for InterleaveType 2
	Figure 6 Data representation for InterleaveType 3
	2.5 ImageType 4 Image Dictionary

	Figure 7 Image data filtered by a MaskColor range ...
	3 Tips and Techniques
	3.1 Using ImageType 3 image Dictionaries
	3.2 Using the Various Interleave Types
	3.3 Using ImageType 4 image Dictionaries
	3.4 MaskColor Values or Ranges for ImageType 4
	3.5 Use of the MultipleDataSources Key

	Index

